• Photonics Research
  • Vol. 7, Issue 6, B12 (2019)
Xianhe Liu1、2, Kishwar Mashooq1, David A. Laleyan1, Eric T. Reid1, and Zetian Mi1、*
Author Affiliations
  • 1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
  • 2Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec H3A 0E9, Canada
  • show less
    DOI: 10.1364/PRJ.7.000B12 Cite this Article Set citation alerts
    Xianhe Liu, Kishwar Mashooq, David A. Laleyan, Eric T. Reid, Zetian Mi. AlGaN nanocrystals: building blocks for efficient ultraviolet optoelectronics[J]. Photonics Research, 2019, 7(6): B12 Copy Citation Text show less
    References

    [1] P. S. Ramanujam, R. H. Berg. Photodimerization in dipeptides for high capacity optical digital storage. Appl. Phys. Lett., 85, 1665-1667(2004).

    [2] M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, M. Jekel. Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection. Water Res., 45, 1481-1489(2011).

    [3] K. G. Lindenauer, J. L. Darby. Ultraviolet disinfection of wastewater: effect of dose on subsequent photoreactivation. Water Res., 28, 805-817(1994).

    [4] B. W. Chwirot, S. Chwirot, W. Jedrzejczyk, M. Jackowski, A. M. Raczyńska, J. Winczakiewicz, J. Dobber. Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques. Lasers Surg. Med., 21, 149-158(1997).

    [5] P. D. D. Schwindt, Y. Jau, H. L. Partner, D. K. Serkland, A. Ison, A. McCants, E. Winrow, J. Prestage, J. Kellogg, N. Yu, C. D. Boschen, I. Kosvin, D. Mailloux, D. Scherer, C. Nelson, A. Hati, D. A. Howe. Miniature trapped-ion frequency standard with 171Yb+. Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, 752-757(2015).

    [6] J. D. Robert, M. S. Brian. Survey of ultraviolet non-line-of-sight communications. Semicond. Sci. Technol., 29, 084006(2014).

    [7] D. K. Serkland, G. A. Keeler, K. M. Geib, G. M. Peake. Narrow linewidth VCSELs for high-resolution spectroscopy. Proc. SPIE, 7229, 722907(2009).

    [8] S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, C. Monroe. Measurement of the lifetime of the 6p 2Po1/2 level of Yb+. Phys. Rev. A, 80, 022502(2009).

    [9] H. Hirayama, N. Noguchi, T. Yatabe, N. Kamata. 227  nm AlGaN light-emitting diode with 0.15  mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density. Appl. Phys. Express, 1, 051101(2008).

    [10] H. Hirayama, N. Noguchi, N. Kamata. 222  nm deep-ultraviolet AlGaN quantum well light-emitting diode with vertical emission properties. Appl. Phys. Express, 3, 032102(2010).

    [11] M. Jo, N. Maeda, H. Hirayama. Enhanced light extraction in 260  nm light-emitting diode with a highly transparent p-AlGaN layer. Appl. Phys. Express, 9, 012102(2015).

    [12] M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, M. Wraback. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl. Phys. Express, 5, 082101(2012).

    [13] J. R. Grandusky, J. Chen, S. R. Gibb, M. C. Mendrick, C. G. Moe, L. Rodak, G. A. Garrett, M. Wraback, L. J. Schowalter. 270  nm pseudomorphic ultraviolet light-emitting diodes with over 60  mW continuous wave output power. Appl. Phys. Express, 6, 032101(2013).

    [14] A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, T. Mukai. High-output-power 255/280/310  nm deep ultraviolet light-emitting diodes and their lifetime characteristics. Semicond. Sci. Technol., 29, 084005(2014).

    [15] C. Pernot, S. Fukahori, T. Inazu, T. Fujita, M. Kim, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, H. Amano. Development of high efficiency 255–355  nm AlGaN-based light-emitting diodes. Phys. Status Solidi A, 208, 1594-1596(2011).

    [16] T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, H. Hirayama. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency. Appl. Phys. Express, 10, 031002(2017).

    [17] T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, M. Kneissl. Improved injection efficiency in 290  nm light emitting diodes with Al(Ga)N electron blocking heterostructure. Appl. Phys. Lett., 103, 031109(2013).

    [18] F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, M. Kneissl. Efficient charge carrier injection into sub-250  nm AlGaN multiple quantum well light emitting diodes. Appl. Phys. Lett., 105, 051113(2014).

    [19] M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, M. Weyers. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol., 26, 014036(2010).

    [20] H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, N. Kamata. 222–282  nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys. Status Solidi A, 206, 1176-1182(2009).

    [21] H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, N. Kamata. 226-273  nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire. Phys. Status Solidi C, 5, 2969-2971(2008).

    [22] H.-C. Yu, Z.-W. Zheng, Y. Mei, R.-B. Xu, J.-P. Liu, H. Yang, B.-P. Zhang, T.-C. Lu, H.-C. Kuo. Progress and prospects of GaN-based VCSEL from near UV to green emission. Prog. Quantum Electron., 57, 1-19(2018).

    [23] H. Yoshida, Y. Yamashita, M. Kuwabara, H. Kan. Demonstration of an ultraviolet 336  nm AlGaN multiple-quantum-well laser diode. Appl. Phys. Lett., 93, 241106(2008).

    [24] M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, H. X. Jiang. Correlation between optical and electrical properties of Mg-doped AlN epilayers. Appl. Phys. Lett., 89, 152120(2006).

    [25] Y. Taniyasu, M. Kasu, T. Makimoto. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 441, 325-328(2006).

    [26] U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, M. Maier. Hole conductivity and compensation in epitaxial GaN:Mg layers. Phys. Rev. B, 62, 10867-10872(2000).

    [27] H. Kawanishi, M. Senuma, M. Yamamoto, E. Niikura, T. Nukui. Extremely weak surface emission from (0001) c-plane AlGaN multiple quantum well structure in deep-ultraviolet spectral region. Appl. Phys. Lett., 89, 081121(2006).

    [28] S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, Z. Mi. Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics. APL Mater., 4, 086115(2016).

    [29] S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, Z. Mi. Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers. Nano Lett., 15, 7801-7807(2015).

    [30] S. Zhao, X. Liu, S. Y. Woo, J. Kang, G. A. Botton, Z. Mi. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band. Appl. Phys. Lett., 107, 043101(2015).

    [31] S. M. Sadaf, S. Zhao, Y. Wu, Y. H. Ra, X. Liu, S. Vanka, Z. Mi. An AlGaN core-shell tunnel junction nanowire light-emitting diode operating in the ultraviolet-C band. Nano Lett., 17, 1212-1218(2017).

    [32] S. M. Sadaf, Y. H. Ra, T. Szkopek, Z. Mi. Monolithically integrated metal/semiconductor tunnel junction nanowire light-emitting diodes. Nano Lett., 16, 1076-1080(2016).

    [33] X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, Z. Mi. Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics. Opt. Express, 25, 30494-30502(2017).

    [34] K. H. Li, X. Liu, Q. Wang, S. Zhao, Z. Mi. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nat. Nanotechnol., 10, 140-144(2015).

    [35] D. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, Z. Mi. AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics. Nano Lett., 17, 3738-3743(2017).

    [36] B. H. Le, S. Zhao, X. Liu, S. Y. Woo, G. A. Botton, Z. Mi. Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation‐free planar ultraviolet photonic device applications. Adv. Mater., 28, 8446-8454(2016).

    [37] X. Liu, S. Zhao, B. H. Le, Z. Mi. Molecular beam epitaxial growth and characterization of AlN nanowall deep UV light emitting diodes. Appl. Phys. Lett., 111, 101103(2017).

    [38] S. Zhao, H. P. T. Nguyen, M. G. Kibria, Z. Mi. III-Nitride nanowire optoelectronics. Prog. Quantum Electron., 44, 14-68(2015).

    [39] S. P. Young, B. R. Hwang, J. C. Lee, I. Hyunsik, H. Y. Cho, T. W. Kang, J. H. Na, C. M. Park. Self-assembled AlxGa1-xN nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy. Nanotechnology, 17, 4640-4643(2006).

    [40] J. Ristić, M. A. Sánchez-García, E. Calleja, J. Sanchez-Páramo, J. M. Calleja, U. Jahn, K. H. Ploog. AlGaN nanocolumns grown by molecular beam epitaxy: optical and structural characterization. Phys. Status Solidi A, 192, 60-66(2002).

    [41] K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, A. V. Davydov. Spontaneously grown GaN and AlGaN nanowires. J. Cryst. Growth, 287, 522-527(2006).

    [42] S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, Z. Mi. Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources. Sci. Rep., 5, 8332(2015).

    [43] F. K. Thomas, D. C. Santino, A. T. M. Sarwar, J. P. Patrick, F. K. Robert, C. M. Roberto. Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions. Nanotechnology, 25, 455201(2014).

    [44] S. D. Carnevale, T. F. Kent, P. J. Phillips, A. T. M. G. Sarwar, C. Selcu, R. F. Klie, R. C. Myers. Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes. Nano Lett., 13, 3029-3035(2013).

    [45] A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, B. Daudin. Growth, structural and optical properties of AlGaN nanowires in the whole composition range. Nanotechnology, 24, 115704(2013).

    [46] A. Pierret, C. Bougerol, M. D. Hertog, B. Gayral, M. Kociak, H. Renevier, B. Daudin. Structural and optical properties of AlxGa1-xN nanowires. Phys. Status Solidi (RRL), 7, 868-873(2013).

    [47] Y. Wu, Y. Wang, K. Sun, Z. Mi. Molecular beam epitaxy and characterization of AlGaN nanowire ultraviolet light emitting diodes on Al coated Si (001) substrate. J. Cryst. Growth, 507, 65-69(2019).

    [48] B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, B. S. Ooi. Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337  nm on metal/silicon substrates. Opt. Express, 25, 1381-1390(2017).

    [49] N. H. Tran, B. H. Le, S. Zhao, Z. Mi. On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures. Appl. Phys. Lett., 110, 032102(2017).

    [50] Q. Wang, A. T. Connie, H. P. Nguyen, M. G. Kibria, S. Zhao, S. Sharif, I. Shih, Z. Mi. Highly efficient, spectrally pure 340  nm ultraviolet emission from AlxGa1-xN nanowire based light emitting diodes. Nanotechnology, 24, 345201(2013).

    [51] B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, B. S. Ooi. Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy. Nanoscale, 9, 7805-7813(2017).

    [52] K. Kishino, H. Sekiguchi, A. Kikuchi. Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays. J. Cryst. Growth, 311, 2063-2068(2009).

    [53] T. Schumann, T. Gotschke, F. Limbach, T. Stoica, R. Calarco. Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer. Nanotechnology, 22, 095603(2011).

    [54] K. Tomioka, K. Ikejiri, T. Tanaka, J. Motohisa, S. Hara, K. Hiruma, T. Fukui. Selective-area growth of III-V nanowires and their applications. J. Mater. Res., 26, 2127-2141(2011).

    [55] A. Bengoechea-Encabo, F. Barbagini, S. Fernández-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, A. Trampert. Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks. J. Cryst. Growth, 325, 89-92(2011).

    [56] H. J. Chu, T. W. Yeh, L. Stewart, P. D. Dapkus. Wurtzite InP nanowire arrays grown by selective area MOCVD. Phys. Status Solidi C, 7, 2494-2497(2010).

    [57] H. Paetzelt, V. Gottschalch, J. Bauer, G. Benndorf, G. Wagner. Selective-area growth of GaAs and InAs nanowires—homo- and heteroepitaxy using templates. J. Cryst. Growth, 310, 5093-5097(2008).

    [58] J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, T. Fukui. Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates. J. Cryst. Growth, 272, 180-185(2004).

    [59] R. Wang, X. Liu, I. Shih, Z. Mi. High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si. Appl. Phys. Lett., 106, 261104(2015).

    [60] Q. Wang, H. P. T. Nguyen, K. Cui, Z. Mi. High efficiency ultraviolet emission from AlxGa1-xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy. Appl. Phys. Lett., 101, 043115(2012).

    [61] X. Liu, K. Mashooq, T. Szkopek, Z. Mi. Improving the efficiency of transverse magnetic polarized emission from AlGaN based LEDs by using nanowire photonic crystal. IEEE Photon. J., 10, 4501211(2018).

    [62] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade. Photonic Crystals: Molding the Flow of Light(2011).

    [63] K. Busch, S. Lölkes, R. B. Wehrspohn, H. Föll. Photonic Crystals(2004).

    [64] T. F. Krauss. Photonic crystals for integrated optics. AIP Conference Proceedings, 89-98(2001).

    [65] K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, S. Noda. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics, 8, 406-411(2014).

    [66] T. Kouno, K. Kishino, K. Yamano, A. Kikuchi. Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission. Opt. Express, 17, 20440-20447(2009).

    [67] J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, G. Subramania. Multi-colour nanowire photonic crystal laser pixels. Sci. Rep., 3, 2982(2013).

    [68] H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths. Science, 319, 445-447(2008).

    [69] B. H. Le, X. Liu, N. H. Tran, S. Zhao, Z. Mi. An electrically injected AlGaN nanowire defect-free photonic crystal ultraviolet laser. Opt. Express, 27, 5843-5850(2019).

    [70] M. Charlton, M. Zoorob, T. Lee. Photonic quasi-crystal LEDs: design, modelling, and optimisation. Proc. SPIE, 6486, 64860R(2007).

    [71] A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, L. A. Kolodziejski. Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode. Appl. Phys. Lett., 78, 563-565(2001).

    [72] A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, C. Weisbuch. GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth. Appl. Phys. Lett., 92, 113514(2008).

    [73] C. Wiesmann, K. Bergenek, N. Linder, U. Schwarz. Analysis of the emission characteristics of photonic crystal LEDs. Proc. SPIE, 6989, 69890L(2008).

    [74] H. Benisty, J. Danglot, A. Talneau, S. Enoch, J. M. Pottage, A. David. Investigation of extracting photonic crystal lattices for guided modes of GaAs-based heterostructures. IEEE J. Quantum Electron., 44, 777-789(2008).

    [75] C.-Y. Cho, J.-B. Lee, S.-J. Lee, S.-H. Han, T.-Y. Park, J. W. Kim, Y. C. Kim, S.-J. Park. Improvement of light output power of InGaN/GaN light-emitting diode by lateral epitaxial overgrowth using pyramidal-shaped SiO2. Opt. Express, 18, 1462-1468(2010).

    [76] J. J. Wierer, A. David, M. M. Megens. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photonics, 3, 163-169(2009).

    [77] M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science, 308, 1296-1298(2005).

    [78] M. Boroditsky, R. Vrijen, R. Coccioli, R. Bhat, E. Yablonovitch. Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals. J. Lightwave Technol., 17, 2096-2112(1999).

    [79] S. Noda, M. Yokoyama, M. Imada, A. Chutinan, M. Mochizuki. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science, 293, 1123-1125(2001).

    [80] S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, S. Noda. Higher-order vector beams produced by photonic-crystal lasers. Opt. Express, 19, 11963-11968(2011).

    [81] Y. Liang, C. Peng, K. Sakai, S. Iwahashi, S. Noda. Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach. Phys. Rev. B, 84, 195119(2011).

    [82] Y. Liang, C. Peng, K. Ishizaki, S. Iwahashi, K. Sakai, Y. Tanaka, K. Kitamura, S. Noda. Three-dimensional coupled-wave analysis for triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization. Opt. Express, 21, 565-580(2013).

    [83] E. Miyai, S. Noda. Phase-shift effect on a two-dimensional surface-emitting photonic-crystal laser. Appl. Phys. Lett., 86, 111113(2005).

    [84] N. Yokouchi, A. J. Danner, K. D. Choquette. Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure. Appl. Phys. Lett., 82, 3608-3610(2003).

    [85] K. Nozaki, T. Baba. Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers. Appl. Phys. Lett., 88, 211101(2006).

    [86] T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, F. Koyama. Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature. Appl. Phys. Lett., 85, 3989-3991(2004).

    [87] W. R. Frei, H. Johnson, K. D. Choquette. Optimization of a single defect photonic crystal laser cavity. J. Appl. Phys., 103, 033102(2008).

    [88] H. Altug, D. Englund, J. Vučković. Ultrafast photonic crystal nanocavity laser. Nat. Phys., 2, 484-488(2006).

    [89] C. Wiesmann, K. Bergenek, N. Linder, U. T. Schwarz. Photonic crystal LEDs-designing light extraction. Laser Photon. Rev., 3, 262-286(2009).

    [90] M. Imada, A. Chutinan, S. Noda, M. Mochizuki. Multidirectionally distributed feedback photonic crystal lasers. Phys. Rev. B, 65, 195306(2002).

    [91] R. J. E. Taylor, D. M. Williams, J. R. Orchard, D. T. D. Childs, S. Khamas, R. A. Hogg. Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers. J. Phys. D, 46, 264005(2013).

    [92] Y.-T. Lin, T.-W. Yeh, Y. Nakajima, P. D. Dapkus. Catalyst-free GaN nanorods synthesized by selective area growth. Adv. Funct. Mater., 24, 3162-3171(2014).

    [93] T. F. Kuech, L. J. Mawst. Nanofabrication of III-V semiconductors employing diblock copolymer lithography. J. Phys. D, 43, 183001(2010).

    [94] S. D. Hersee, X. Sun, X. Wang. The controlled growth of GaN nanowires. Nano Lett., 6, 1808-1811(2006).

    [95] A. K. Rishinaramangalam, S. M. Ul Masabih, M. N. Fairchild, J. B. Wright, D. M. Shima, G. Balakrishnan, I. Brener, S. R. J. Brueck, D. F. Feezell. Controlled growth of ordered III-nitride core-shell nanostructure arrays for visible optoelectronic devices. J. Electron. Mater., 44, 1255-1262(2014).

    [96] R. Merlin, S. Young. Photonic crystals as topological high-Q resonators. Opt. Express, 22, 18579-18587(2014).

    [97] H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, H. Kan. Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode. Appl. Phys. Lett., 96, 211122(2010).

    [98] C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, C. G. V. D. Walle. Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters. Appl. Phys. Lett., 108, 141101(2016).

    [99] S. L. Chuang. Physics of Photonic Devices(2009).

    [100] F. M. D. Sopra, H. P. Zappe, M. Moser, R. Hovel, H. Gauggel, K. Gulden. Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth. IEEE Photon. Technol. Lett., 11, 1533-1535(1999).

    [101] P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, J. Jacquet. 3.6-MHz linewidth 1.55-μm monomode vertical-cavity surface-emitting laser. IEEE Photon. Technol. Lett., 13, 269-271(2001).

    [102] R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, J. J. Coleman. Low-threshold narrow-linewidth InGaAs-GaAs ridge-waveguide DBR lasers with first-order surface gratings. IEEE Photon. Technol. Lett., 9, 149-151(1997).

    [103] M. Okai, M. Suzuki, T. Taniwatari. Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6  kHz) spectral linewidth. Electron. Lett., 29, 1696-1697(1993).

    [104] W.-J. Liu, X.-L. Hu, L.-Y. Ying, J.-Y. Zhang, B.-P. Zhang. Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers. Appl. Phys. Lett., 104, 251116(2014).

    [105] M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, T. Takeuchi. High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser. Appl. Phys. Express, 11, 112101(2018).

    [106] Y.-S. Liu, A. F. M. Saniul Haq, K. Mehta, T.-T. Kao, S. Wang, H. Xie, S.-C. Shen, P. D. Yoder, F. A. Ponce, T. Detchprohm, R. D. Dupuis. Optically pumped vertical-cavity surface-emitting laser at 374.9  nm with an electrically conducting n-type distributed Bragg reflector. Appl. Phys. Express, 9, 111002(2016).

    [107] G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, B. Zhang. Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers. Opt. Express, 24, 15546-15553(2016).

    [108] K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, I. Akasaki. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors. Appl. Phys. Express, 9, 102101(2016).

    [109] C. Henry. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron., 18, 259-264(1982).

    [110] C. H. Henry, R. A. Logan, F. R. Merritt. Measurement of gain and absorption spectra in AlGaAs buried heterostructure lasers. J. Appl. Phys., 51, 3042-3050(1980).

    [111] S. H. Park, S. L. Chuang. Linewidth enhancement factor of wurtzite GaN/AlGaN quantum-well lasers with spontaneous polarization and piezoelectric effects. Appl. Phys. A, 78, 107-111(2004).

    [112] K. Yamano, K. Kishino, H. Sekiguchi, T. Oto, A. Wakahara, Y. Kawakami. Novel selective area growth (SAG) method for regularly arranged AlGaN nanocolumns using nanotemplates. J. Cryst. Growth, 425, 316-321(2015).

    [113] M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, H. X. Jiang. Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys. Appl. Phys. Lett., 86, 092108(2005).

    [114] T. Kinoshita, T. Obata, H. Yanagi, S.-I. Inoue. High p-type conduction in high-Al content Mg-doped AlGaN. Appl. Phys. Lett., 102, 012105(2013).

    [115] M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, H. X. Jiang. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl. Phys. Lett., 82, 3041-3043(2003).

    [116] K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, B. Daudin. Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111). Phys. Rev. B, 84, 245302(2011).

    [117] A. Urban, J. Malindretos, J. H. Klein-Wiele, P. Simon, A. Rizzi. Ga-polar GaN nanocolumn arrays with semipolar faceted tips. New J. Phys., 15, 053045(2013).

    [118] M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, K. A. Bertness. Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy. Cryst. Growth Des., 16, 596-604(2016).

    [119] S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, U. K. Mishra. N-polar deep recess MISHEMTs with record 2.9  W/mm at 94  GHz. IEEE Electron. Dev. Lett., 37, 713-716(2016).

    [120] S. Wienecke, B. Romanczyk, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, X. Zheng, S. Keller, U. K. Mishra. N-polar GaN cap MISHEMT with record power density exceeding 6.5  W/mm at 94  GHz. IEEE Electron. Dev. Lett., 38, 359-362(2017).

    [121] B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, U. K. Mishra. Demonstration of constant 8  W/mm power density at 10, 30, and 94  GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs. IEEE Trans. Electron. Devices, 65, 45-50(2018).

    [122] M. L. Nakarmi, N. Nepal, J. Y. Lin, H. X. Jiang. Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys. Appl. Phys. Lett., 94, 091903(2009).

    [123] A. T. Connie, S. Zhao, S. M. Sadaf, I. Shih, Z. Mi, X. Du, J. Lin, H. Jiang. Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy. Appl. Phys. Lett., 106, 213105(2015).

    [124] S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, Z. Mi. p-Type InN nanowires. Nano Lett., 13, 5509-5513(2013).

    [125] A. A. Allerman, M. H. Crawford, M. A. Miller, S. R. Lee. Growth and characterization of Mg-doped AlGaN-AlN short-period superlattices for deep-UV optoelectronic devices. J. Cryst. Growth, 312, 756-761(2010).

    [126] P. Kozodoy, M. Hansen, S. P. DenBaars, U. K. Mishra. Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices. Appl. Phys. Lett., 74, 3681-3683(1999).

    [127] K. Laaksonen, M. G. Ganchenkova, R. M. Nieminen. Vacancies in wurtzite GaN and AlN. J. Phys. Condens. Matter, 21, 015803(2008).

    [128] F. Shahedipour, B. W. Wessels. Investigation of the formation of the 2.8  eV luminescence band in p-type GaN:Mg. Appl. Phys. Lett., 76, 3011-3013(2000).

    [129] S. Zhao, M. Djavid, Z. Mi. Surface emitting, high efficiency near-vacuum ultraviolet light source with aluminum nitride nanowires monolithically grown on silicon. Nano Lett., 15, 7006-7009(2015).

    [130] R. Dahal, J. Li, S. Majety, B. N. Pantha, X. K. Cao, J. Y. Lin, H. X. Jiang. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material. Appl. Phys. Lett., 98, 211110(2011).

    [131] C. Attaccalite, M. Bockstedte, A. Marini, A. Rubio, L. Wirtz. Coupling of excitons and defect states in boron-nitride nanostructures. Phys. Rev. B, 83, 144115(2011).

    [132] W. Orellana, H. Chacham. Stability of native defects in hexagonal and cubic boron nitride. Phys. Rev. B, 63, 125205(2001).

    [133] V. Wang, R. J. Liu, H. P. He, C. M. Yang, L. Ma. Hybrid functional with semi-empirical van der Waals study of native defects in hexagonal BN. Solid State Commun., 177, 74-79(2014).

    [134] Y. Taniyasu, M. Kasu. Origin of exciton emissions from an AlN p-n junction light-emitting diode. Appl. Phys. Lett., 98, 131910(2011).

    [135] Z. Yuewei, A. A. Andrew, K. Sriram, A. Fatih, W. M. Michael, M. A. Andrew, R. Siddharth. Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs. Appl. Phys. Express, 9, 052102(2016).

    [136] Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, S. Rajan. Interband tunneling for hole injection in III-nitride ultraviolet emitters. Appl. Phys. Lett., 106, 141103(2015).

    [137] S. M. Sadaf, Y. H. Ra, H. P. T. Nguyen, M. Djavid, Z. Mi. Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes. Nano Lett., 15, 6696-6701(2015).

    [138] A. T. M. G. Sarwar, B. J. May, J. I. Deitz, T. J. Grassman, D. W. McComb, R. C. Myers. Tunnel junction enhanced nanowire ultraviolet light emitting diodes. Appl. Phys. Lett., 107, 101103(2015).

    [139] Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, S. Rajan. Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions. Appl. Phys. Lett., 109, 121102(2016).

    [140] S. Zhao, S. M. Sadaf, S. Vanka, Y. Wang, R. Rashid, Z. Mi. Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242  nm. Appl. Phys. Lett., 109, 201106(2016).

    [141] B. H. Le, S. Zhao, N. H. Tran, T. Szkopek, Z. Mi. On the Fermi-level pinning of InN grown surfaces. Appl. Phys. Express, 8, 061001(2015).

    [142] S. Zhao, X. Liu, Y. Wu, Z. Mi. An electrically pumped 239  nm AlGaN nanowire laser operating at room temperature. Appl. Phys. Lett., 109, 191106(2016).

    [143] M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, K. Kishino. Random laser action in GaN nanocolumns. Appl. Phys. Lett., 97, 151109(2010).

    [144] M.-H. Lo, Y.-J. Cheng, M.-C. Liu, H.-C. Kuo, S. C. Wang. Lasing at exciton transition in optically pumped gallium nitride nanopillars. Opt. Express, 19, 17960-17965(2011).

    [145] C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, R. Mu. Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires. Appl. Phys. Lett., 99, 063115(2011).

    [146] S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, G.-C. Yi. Random laser action in ZnO nanorod arrays embedded in ZnO epilayers. Appl. Phys. Lett., 84, 3241-3243(2004).

    [147] J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, P. Lodahl. Random nanolasing in the Anderson localized regime. Nat. Nanotechnol., 9, 285-289(2014).

    [148] H. Yoshida, Y. Yamashita, M. Kuwabara, H. Kan. A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nat. Photonics, 2, 551-554(2008).

    CLP Journals

    [1] Xiaohang Li, Russell D. Dupuis, Tim Wernicke. Semiconductor UV photonics: feature introduction[J]. Photonics Research, 2019, 7(12): SUVP1

    [2] Wangqi Mao, Mingming Jiang, Jiaolong Ji, Peng Wan, Xiangbo Zhou, Caixia Kan. Microcrystal modulated exciton-polariton emissions from single ZnO@ZnO:Ga microwire[J]. Photonics Research, 2020, 8(2): 175

    Xianhe Liu, Kishwar Mashooq, David A. Laleyan, Eric T. Reid, Zetian Mi. AlGaN nanocrystals: building blocks for efficient ultraviolet optoelectronics[J]. Photonics Research, 2019, 7(6): B12
    Download Citation