• Infrared and Laser Engineering
  • Vol. 50, Issue 7, 20200230 (2021)
Mengzhen Zhu, Xia Chen, Xu Liu, Chaoyong Tan, and Wei Li
Author Affiliations
  • Ordnance Non-Commissioned Officer Academy, Army Engineering University, Wuhan 430075, China
  • show less
    DOI: 10.3788/IRLA20200230 Cite this Article
    Mengzhen Zhu, Xia Chen, Xu Liu, Chaoyong Tan, Wei Li. Situation and key technology of tactical laser anti-UAV[J]. Infrared and Laser Engineering, 2021, 50(7): 20200230 Copy Citation Text show less
    References

    [1] Yong Cheng, Yanlong Guo, Huang Tang, et al. Development trend of tactical laser weapons. Laser & Optoelectronics Progress, 53, 110004(2016).

    [3] Yiyong Li, Jianhua Wang, Zhi Li. Development situation of high-energy laser weapons. Journal of Ordnance Equipment Engineering, 38, 1-6(2017).

    [6] Dongyan Zhang, Jie Zhang. The latest development of laser weapon of Lockheed Martin. Electro-optic Technology Application, 34, 1-5(2019).

    [7] Qiusheng Cao, Jing Lu, Jianguang Liu, et al. From SHIELD to look into the anti-missile capability and technical challenge of airborne laser weapon. Journal of CAEIT, 14, 443-451(2019).

    [10] Qiyi He, Siguang Zong. Research progress and consideration of shipborne laser weapon. Laser & Infrared, 47, 1455-1460(2017).

    [11] Ludewigt K, Riesbeck Th, Graf A, et al. 50kW laser weapon demonstrat of Rheinmetall Wafe Munition[C]Proc of SPIE, 2013, 8898: 88980N.

    [13] Rudolf Protz, Jürgen Zoz, Franz Geidek, et al. Highpower beam combininga step to a future laser weapon system[C]Proc of SPIE, 2012, 8547: 854708.

    [17] A Giesen, H Hügel, VossA, et al. Scalable concept for diode-pumped high-power solid-state lasers. Applied Physics B, 58, 365-372(1994).

    [18] Y Y Kalisky, O Kalisky. The status of high-power lasers and their applications in the battlefield. Optical Engineering, 49, 091003(2010).

    [19] Jiayu Yi, Bo Ru, Haixia Cao, et al. Design and experiment on high-power direct-liquid-cooled thin-disk solid-state Laser. Chinese Journal of Lasers, 45, 1201004(2018).

    [20] Qijun Gan, Benxue Jiang, Pande Zhang, et al. Research progress of high average power solid-state lasers. Laser & Optoelectronics Progress, 54, 010003(2017).

    [21] McNaught S J, Komine H, Weiss S B, et al. 100kW coherently combined slab MOPAs[C]Conference on Lasers Electro Optics, 2009 2009 Conference on Quantum Electronics Laser Science Conference, CLEOQELS 2009, 2009: 12.

    [22] Xiaoli Lei, Ling Sun, Yang Liu, et al. Laser with 100 kW output power developed by the Textron company. Laser & Infrared, 41, 948-952(2011).

    [23] B Sweetman. General atomic claims laser breakthrough. Aviation Week & Space Technology, 177, 30-31(2015).

    [24] Warwick Graham. General atomics: third-gen electric laser weapon now ready. Aviation Week & Space Technology, 3, 30-31(2015).

    [25] Haixia An, Kun Deng, Zhiyue Bi. Miniaturization and lightweight technology of high-power laser equipment. Chinese Optics, 10, 321-330(2017).

    [26] Chao Wang, Xiaojun Tang, Liujing Xu, et al. Investigation on thermal effect of high power slab laser with 11kW. Chinese Journal of Lasers, 37, 2807-2809(2010).

    [27] Xiaokang Ding, Yang Liu, Weiqiao Zhang, et al. Yb: YAG surface-doped slab laser amplifier with laser power of 10 kW. Laser & Infrared, 50, 157-160(2020).

    [28] Qingsong Gao, Hao Hu, Zhengping Pei, et al. Design and experiment study of all-solid slab laser amplifier with laser power of 10 kW. Chinese Journal of Lasers, 39, 0202001(2012).

    [29] Juntao Wang, Lixin Tong, Liu Xu, et al. 5kW end-pumped Nd: YAG slab lasers and beam quality improvement. Chinese Journal of Lasers, 45, 0101003(2018).

    [30] Xiaojun Tang, Gang Wang, Jiao Liu, et al. Development of high brightness solid-state laser technology. Strategic Study of CAE, 22, 49-55(2020).

    [31] Qingsong Gao, Tangjian Zhou, Jianli Shang, et al. High efficiency and compact Yb: YAG slab all-solid state laser at room temperature. High Power Laser and Particle Beams, 32, 121009(2020).

    [32] Guo Y D. Beam quality control technology f high energysolid laser system[C]Chengdu: The Fourth Symposium on the Development of Atmospheric Optics Adaptive Optics, 2019. (in Chinese)

    [33] Jiao Liu, Juntao Wang, Tangjian Zhou, et al. Analysis and developments of high-power planar waveguide lasers. High Power Laser and Particle Beams, 27, 061015(2015).

    [34] Juntao Wang, Zhenhai Wu, Hua Su, et al. 1.5kW efficient CW Nd:YAG planar waveguide MOPA laser. Optics Letters, 42, 3149-3152(2017).

    [36] Xiaolong Chen, Yu He, Zhongwei Xu, et al. Theoretical and experimental investigation of a 10-kW high-efficiency 1070-nm fiber amplifier. Chinese Journal of Lasers, 47, 1006001(2020).

    [37] H H Lin, X Tang, C Y Li, et al. Home-made single-fiber laser system achieved 10.6 kW laser output. Chinese Journal of Lasers, 45, 0315001(2018).

    [38] Gong M L, Yan P, Xiao Q R. High power fiber laser technology future development[C]Weihai: Seminar on Advanced High Power High Energy Laser Technology Application, 2017. (in Chinese)

    [39] Zejin Liu, Hongyan Wang, Xiaojun Xu. High energy diode pumped gas laser. Chinese Journal of Lasers, 48, 0401001(2021).

    [40] Syring J. Ballistic missile defense system update[ROL]. [20160224]. https:www.csis.geventsballisticmissiledefensesystemupdate1.

    [41] Ronald O R. Navy shipboard lasers f surface, air, missile defense: background issues f congress[EBOL]. (20120629)[20141011]. http:www.crs.gov.

    [42] Guoguang Ren, Weiwei Yi, Changhong Qu. High-power fiber lasers and their applications in tactical laser weapons. Laser& Infrared, 45, 1145-1151(2015).

    [43] Rudolf Protz, Jürgen Zoz, Franz Geidek, et al. Highpower beam combininga step to a future laser weapon system[C]HighPower Lasers 2012: Technology Systems, Proc of SPIE, 2012, 8547: 854708.

    [44] Honea E, Afzal R S, SavageLeuchs M, et al. Advances in fiber laser spectral beam combining f power scaling[C]Proceedings of SPIE, 2016, 9730: 97300Y.

    [45] Yi Ma, Hong Yan, Wanjing Peng, et al. 9.6kW common aperture spectral beam combination syatem based on multi-channel narrow-linewidth fiber lasers. Chinese Journal of Lasers, 43, 0901009(2016).

    [46] Ye Zheng, Zhanda Zhu, Xiaoxi Liu, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings. Appl Opt, 58, 8339-8343(2019).

    [47] Ye Zheng, Yifeng Yang, Xiang Zhao, et al. Research progress on spectral beam combining technology of high-power fiber lasers. Chinese Journal of Lasers, 44, 0201002(2017).

    [49] Mengzhen Zhu, Qiang Wan, Xu Liu, et al. Study on coherent characteristic of solid state laser with corner cube resonator. Inrared and Laser Engineering, 45, 0906008(2016).

    [50] Xiaolin Wang, Pu Zhou, Rongtao Su, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers. Chinese Journal of Lasers, 44, 0201001(2017).

    [51] Missile Defense Agency. Department of defense fiscal year(FY)2017 president’s budget submission[ZOL]. [20170224]. http:www.docin.comp1477155476.html.

    [52] Fles A, Ehrenreich T, Holten R, et al. MultikW coherent combining of fiber lasers seeded with pseudo rom phase modulated light[C]SPIE, 2016, 9728: 97281Y.

    [55] Dong Zhi, Yanxing Ma, Pengfei Ma, et al. Efficient coherent beam combining of fiber laser array through km-scale turbulent atmosphere. Infrared and Laser Engineering, 48, 1005007(2019).

    [56] Y Cheng, X Liu, Q Wan, et al. Mutual injection phase locking coherent combination of solid state lasers based on corner cube. Optics Letters, 38, 5150-5152(2013).

    [57] Bin Sun, Mengzhen Zhu, Chaoyong Tan, et al. Latest progress of research on adjust-free solid state laser. Infrared and Laser Engineering, 43, 3244-3251(2014).

    [58] Cheng Yong, Zhu Mengzhen, Tang Huang, et al. High power solid state laser with cner cube retroreflects of mutualinjection confinement[C]LIDAR Imaging Detection Target Recognition, Proc of SPIE, 2017, 10605: 106052G.

    [59] Soulard Rémi, N Quinn Mark, Tajima Toshiki, et al. ICAN: A novel laser architecture for space debris removal. Acta Astronautica, 105, 192-200(2014).

    [60] Ebisuzaki Toshikazu, N Quinn Mark, Wada Satoshi, et al. Demonstration desighs for the remediation of space debris from the international Space Station. Acta Astronautica, 112, 102-113(2015).

    [61] Optics g. DARPA extends laser weapon range[EBOL]. http:optics.gnews5313.

    [62] Huihua Wang, Longxin Lin, Xin Ye. Progress an Tendency of high power slab lasers. Infrared and Laser Engineering, 49, 20190456(2020).

    [63] Guoguang Ren, Weiwei Yi, Yu Qi, et al. U. S. theater and strategic UVA-Borne laser weapon. Laser & Optoelectronics Progress, 54, 100002(2017).

    [64] Quan Yi, Xianzhi Sun, Jianchang Yang, et al. Analysis on the accuracy of tactical laser weapon. Fire Control& Command Control, 43, 98-102(2018).

    [65] Lei Zhao, Ming Ji, Zhenhai Zhao, et al. Primary-precise compounded control for stabilized platform in shipborne laser weapon. Laser & Infrared, 49, 86-92(2019).

    [66] Guoliang Xu, Shubin Zhao, Yong Wang. Technology analysis of shipborne high-energy laser weapon systems intercepting UAVs. Modern Defence Technology, 43, 12-17(2015).

    [67] David H Titterton. Military Laser Technology Systems[M]. Cheng Yong translated. Beijing: National Defense Press, 2018. (in Chinese)

    [68] Yong Cheng, Mengzhen Zhu, Yunfeng Ma, et al. Mechanism and effects of complex laser ablation. Infrared and Laser Engineering, 45, 1105005(2016).

    CLP Journals

    [1] Jin Peng, Hongqiao Xu, Yongbiao Wang, Xingxing Wang, Yongzhen Zhang, Weimin Long, Dingyu Zhang. Effect of laser spot size on the behavior of molten pool and keyhole in laser welding[J]. Infrared and Laser Engineering, 2023, 52(7): 20220130

    [2] Shan Xue, Yuchao Chen, Qiongying Lv, Guohua Cao. Image recognition method of anti drone system based on coordinate attention mechanism[J]. Infrared and Laser Engineering, 2022, 51(9): 20211101

    [3] Liya Li, Song He, Zhu Zhao, Ya Song, Rong Cai, Changmeng Zhang, Ruifeng Fan, Dongyi Yu. Construction and development of LSS target prevention and control system[J]. Infrared and Laser Engineering, 2023, 52(12): 20230034

    [4] Kuangang Fan, Shuang Lei, Tong Bie. Design and implementation of intelligent UAV intrusion detection, tracking and interception system[J]. Infrared and Laser Engineering, 2022, 51(8): 20210750

    [5] Yueting Zhang, Yi Tan, Jihong Wang, Qi Peng, Zhikun Yang. Influence of solid-gas coupling thermal effect caused by stray light from laser window on beam quality[J]. Infrared and Laser Engineering, 2022, 51(9): 20210966

    [6] Mengzhen Zhu, Yun Liu, Chaowei Mi, Jingsong Wei, Xia Chen, Fangtao Tian, Sumao Feng, Sai Wang. Experimental study on a CMOS image sensor damaged by a composite laser[J]. Infrared and Laser Engineering, 2022, 51(7): 20210537

    Mengzhen Zhu, Xia Chen, Xu Liu, Chaoyong Tan, Wei Li. Situation and key technology of tactical laser anti-UAV[J]. Infrared and Laser Engineering, 2021, 50(7): 20200230
    Download Citation