• Photonics Research
  • Vol. 11, Issue 7, 1238 (2023)
Qing Wu1, Gang Zhao1, Haibin Wu1, and Meng Zhang2、*
Author Affiliations
  • 1Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
  • 2School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.1364/PRJ.483172 Cite this Article Set citation alerts
    Qing Wu, Gang Zhao, Haibin Wu, Meng Zhang. Open-ended exploration of ultrashort pulse lasers: an innovative design strategy for devices based on 2D materials[J]. Photonics Research, 2023, 11(7): 1238 Copy Citation Text show less
    References

    [1] R. Arora, G. I. Petrov, J. A. Liu, V. V. Yakovlev. Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing. J. Biomed. Opt., 16, 021114(2011).

    [2] B. Nie, I. Saytashev, A. Chong, H. Liu, S. N. Arkhipov, F. W. Wise, M. Dantus. Multimodal microscopy with sub-30 fs Yb fiber laser oscillator. Biomed. Opt. Express, 3, 1750-1756(2012).

    [3] T. Kurita, K. Komatsuzaki, M. Hattori. Advanced material processing with nano- and femto-second pulsed laser. Int. J. Mach. Tools Manuf., 48, 220-227(2008).

    [4] D. Stehr, C. M. Morris, C. Schmidt, M. S. Sherwin. High-performance fiber-laser-based terahertz spectrometer. Opt. Lett., 35, 3799-3801(2010).

    [5] R. Ma, W. L. Zhang, S. S. Wang, X. Zeng, H. Wu, Y. J. Rao. Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure. Laser Phys. Lett., 15, 085111(2018).

    [6] D. E. Spence, P. N. Kean, W. Sibbett. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett., 16, 42-44(1991).

    [7] J. J. Zayhowski, C. Dill. Diode-pumped passively Q-switched picosecond microchip lasers. Opt. Lett., 19, 1427-1429(1994).

    [8] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635-639(2000).

    [9] O. Okhotnikov, A. Grudinin, M. Pessa. Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications. New J. Phys., 6, 177(2004).

    [10] Y. J. Shen, X. H. Han, L. J. Li, X. M. Duan, L. Zhou, W. Q. Xie, R. J. Lan, Y. Q. Yang. Continuous-wave mode-locked Tm:YAG laser with GaAs-based SESAM. Infrared Phys. Technol., 111, 103539(2020).

    [11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [12] T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari. Nanotube-polymer composites for ultrafast photonics. Adv. Mater., 21, 3874-3899(2009).

    [13] Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [14] Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803-810(2010).

    [15] F. Torrisi, T. Hasan, W. P. Wu, Z. P. Sun, A. Lombardo, T. S. Kulmala, G. W. Hsieh, S. J. Jung, F. Bonaccorso, P. J. Paul, D. P. Chu, A. C. Ferrari. Inkjet-printed graphene electronics. ACS Nano, 6, 2992-3006(2012).

    [16] H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, K. P. Loh. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express, 22, 7249-7260(2014).

    [17] W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, D. Y. Tang. Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber. Appl. Phys. Lett., 96, 031106(2010).

    [18] L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. L. Bao, K. P. Loh. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Opt. Lett., 35, 3622-3624(2010).

    [19] G. Y. Li, G. D. Zhang, R. Lou, Y. S. Wang, X. P. Xie, J. Wang, Y. G. Wang, G. H. Cheng. Graphene fabrication by using femtosecond pulsed laser and its application on passively Q-switched solid-state laser as saturable absorber. IEEE Photon. J., 12, 1501009(2020).

    [20] K. J. Koski, C. D. Wessells, B. W. Reed, J. J. Cha, D. S. Kong, Y. Cui. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc., 134, 13773-13779(2012).

    [21] C. Y. Ma, C. Wang, B. Gao, J. Adams, G. Wu, H. Zhang. Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Appl. Phys. Rev., 6, 041304(2019).

    [22] Y. Zhang, C. Y. Ma, J. L. Xie, H. Agren, H. Zhang. Black phosphorus/polymers: status and challenges. Adv. Mater., 33, 2100113(2021).

    [23] Y. I. Jhon, J. Lee, Y. M. Jhon, J. H. Lee. Ultrafast mode-locking in highly stacked Ti3C2Tx MXenes for 1.9-μm infrared femtosecond pulsed lasers. Nanophotonics, 10, 1741-1751(2021).

    [24] Z. Li, C. Cheng, N. Dong, C. Romero, Q. Lu, J. Wang, J. R. V. de Aldana, Y. Tan, F. Chen. Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure. Photon. Res., 5, 406-410(2017).

    [25] M. Ozmaian, A. Fathizadeh, M. Jalalvand, M. R. Ejtehadi, S. M. V. Allaei. Diffusion self-assembly of C60 molecules on monolayer graphyne sheets. Sci. Rep., 6, 21910(2016).

    [26] Q. Chen, J. Zhao, H. H. Cheng. Graphene-based assemblies for moist-electric generation. Front. Energy Res., 9, 738142(2021).

    [27] Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, C. M. Soukoulis. Graphene plasmonics: a platform for 2D optics. Adv. Opt. Mater., 7, 1800537(2019).

    [28] G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber. Opt. Express, 21, 12797-12802(2013).

    [29] J. H. Lin, G. H. Huang, C. H. Ou, K. C. Che, W. R. Liu, S. Y. Tasy, Y. H. Chen. Q-switched pulse and mode-locked pulse generation from a Yb3+-doped fiber laser based on Bi2Se3. IEEE Photon. J., 10, 1502410(2018).

    [30] P. Gao, H. Z. Huang, X. H. Wang, H. G. Liu, J. H. Huang, W. Weng, S. T. Dai, J. H. Li, W. X. Lin. Passively Q-switched solid-state Tm:YAG laser using topological insulator Bi2Te3 as a saturable absorber. Appl. Opt., 57, 2020-2024(2018).

    [31] Z. Q. Niu, T. L. Feng, T. Li, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, S. Z. Zhao, W. C. Qiao, H. W. Chu, Y. Z. Liu. Theoretical and experimental investigations on doubly Q-switched Tm:YAP laser with EOM and Sb2Te3 nanosheets. Opt. Express, 29, 24684-24694(2021).

    [32] Z. Q. Li, Y. X. Zhang, C. Cheng, H. H. Yu, F. Chen. 6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers. Opt. Express, 26, 11321-11330(2018).

    [33] C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, D. Y. Tang. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett., 101, 211106(2012).

    [34] M. Zhang, G. H. Hu, G. Q. Hu, R. C. T. Howe, L. Chen, Z. Zheng, T. Hasan. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber. Sci. Rep., 5, 17482(2015).

    [35] J. D. Yin, J. R. Li, H. Chen, J. T. Wang, P. G. Yan, M. L. Liu, W. J. Liu, W. Lu, Z. H. Xu, W. F. Zhang, J. Z. Wang, Z. P. Sun, S. C. Ruan. Large-area highly crystalline WSe2 atomic layers for ultrafast pulsed lasers. Opt. Express, 25, 30020-30031(2017).

    [36] X. C. Su, B. T. Zhang, Y. R. Wang, G. B. He, G. R. Li, N. Lin, K. J. Yang, J. L. He, S. D. Liu. Broadband rhenium disulfide optical modulator for solid-state lasers. Photon. Res., 6, 498-505(2018).

    [37] X. L. Sun, B. T. Zhang, Y. L. Li, X. Y. Luo, G. R. Li, Y. X. Chen, C. Q. Zhang, J. L. He. Tunable ultrafast nonlinear optical properties of graphene/MoS2 van der Waals heterostructures and their application in solid-state bulk lasers. ACS Nano, 12, 11376-11385(2018).

    [38] A. Afroozeh, E. Akbari, P. Yupapin. Recent advance in gas sensing by using two-dimensional transition metal disulfides materials. J. Nanoelectron. Optoelectron., 14, 1225-1229(2019).

    [39] Y. Xiong, H. W. Chen, D. W. Zhang, P. Zhou. Electronic and optoelectronic applications based on ReS2. Phys. Status Solidi RRL, 13, 1800658(2019).

    [40] B. Zhao, D. Y. Shen, Z. C. Zhang, P. Lu, M. Hossain, J. Li, B. Li, X. D. Duan. 2D metallic transition-metal dichalcogenides: structures, synthesis, properties, and applications. Adv. Funct. Mater., 31, 2105132(2021).

    [41] A. Brown, S. Rundqvist. Refinement of the crystal structure of black phosphorus. Acta Crystallographica, 19, 684-685(1965).

    [42] M. Zhang, Q. Wu, F. Zhang, L. L. Chen, X. X. Jin, Y. W. Hu, Z. Zheng, H. Zhang. 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater., 7, 1800224(2019).

    [43] H. C. Jin, S. Xin, C. H. Chuang, W. D. Li, H. Y. Wang, J. Zhu, H. Y. Xie, T. M. Zhang, Y. Y. Wan, Z. K. Qi, W. S. Yan, Y. R. Lu, T. S. Chan, X. J. Wu, J. B. Goodenough, H. X. Ji, X. F. Duan. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science, 370, 192-197(2020).

    [44] Y. S. Zhang, S. W. Wang, S. L. Chen, Q. L. Zhang, X. Wang, X. L. Zhu, X. H. Zhang, X. Xu, T. F. Yang, M. He, X. Yang, Z. W. Li, X. Chen, M. F. Wu, Y. R. Lu, R. M. Ma, W. Lu, A. L. Pan. Wavelength-tunable mid-infrared lasing from black phosphorus nanosheets. Adv. Mater., 32, 1808319(2020).

    [45] L. J. Li, T. X. Li, L. Zhou, J. Y. Fan, Y. Q. Yang, W. Q. Xie, S. S. Li. Passively Q-switched diode-pumped Tm, Ho:LuVO4 laser with a black phosphorus saturable absorber. Chin. Phys. B, 28, 094205(2019).

    [46] J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, K. M. Abramski. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt. Lett., 40, 3885-3888(2015).

    [47] M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi. 25th Anniversary Article: MXenes: a new family of two-dimensional materials. Adv. Mater., 26, 992-1005(2014).

    [48] N. Liaros, J. Tucek, K. Dimos, A. Bakandritsos, K. S. Andrikopoulos, D. Gournis, R. Zboril, S. Couris. The effect of the degree of oxidation on broadband nonlinear absorption and ferromagnetic ordering in graphene oxide. Nanoscale, 8, 2908-2917(2016).

    [49] X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, H. Zhang. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev., 12, 1700229(2018).

    [50] S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, D. Y. Fan. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt. Express, 23, 11183-11194(2015).

    [51] Q. Wu, Y. Z. Wang, W. C. Huang, C. Wang, Z. Zheng, M. Zhang, H. Zhang. MXene-based high-performance all-optical modulators for actively Q-switched pulse generation. Photon. Res., 8, 1140-1147(2020).

    [52] Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Y. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, R. Podila. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Mater., 30, 1705714(2018).

    [53] J. C. Lan, J. P. Qiao, W. H. Sung, C. H. Chen, R. H. Jhang, S. H. Lin, L. R. Ng, G. C. Liang, M. Y. Wu, L. W. Tu, C. M. Cheng, H. Liu, C. K. Lee. Role of carrier-transfer in the optical nonlinearity of graphene/Bi2Te3 heterojunctions. Nanoscale, 12, 16956-16966(2020).

    [54] H. Long, J. W. Hu, F. G. Wu, H. F. Dong. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Phys. Sin., 69, 188102(2020).

    [55] J. S. He, C. Wang, B. Zhou, Y. Zhao, L. L. Tao, H. Zhang. 2D van der Waals heterostructures: processing, optical properties and applications in ultrafast photonics. Mater. Horiz., 7, 2903-2921(2020).

    [56] Z. H. Hu, X. Liu, P. L. Hernandez-Martinez, S. S. Zhang, P. Gu, W. Du, W. G. Xu, H. V. Demir, H. Y. Liu, Q. H. Xiong. Interfacial charge and energy transfer in van der Waals heterojunctions. Infomat, 4, e12290(2022).

    [57] Y. Wen, X. S. Zhao, W. Zhan. A MoS2-graphene heterojunction as saturable absorber for passively Q-switched mode-locked Nd:GGG laser. Optik, 170, 90-94(2018).

    [58] B. Z. Yan, G. R. Li, B. N. Shi, J. T. Liu, H. K. Nie, K. J. Yang, B. T. Zhang, J. L. He. 2D tellurene/black phosphorus heterojunctions based broadband nonlinear saturable absorber. Nanophotonics, 9, 2593-2602(2020).

    [59] M. M. Haley, S. C. Brand, J. J. Pak. Carbon networks based on dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew. Chem. Int. Ed. Engl., 36, 836-838(1997).

    [60] G. X. Li, Y. L. Li, H. B. Liu, Y. B. Guo, Y. J. Li, D. B. Zhu. Architecture of graphdiyne nanoscale films. Chem. Commun., 46, 3256-3258(2010).

    [61] M. Y. Zong, Y. Q. Zu, J. Guo, Z. Zhang, J. J. Liu, Y. Q. Ge, J. Liu, L. B. Su. Broadband nonlinear optical response of graphdiyne for mid-infrared solid-state lasers. Sci. China-Phys. Mech. Astron., 64, 294214(2021).

    [62] N. Zhang, J. Y. Wu, T. Y. Yu, J. Q. Lv, H. Liu, X. P. Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys., 16, 23201(2021).

    [63] X. Chen, X. Jiang, N. Yang. Graphdiyne electrochemistry: progress and perspectives. Small, 18, 2201135(2022).

    [64] C. Lu, Y. Yang, J. Wang, R. P. Fu, X. X. Zhao, L. Zhao, Y. Ming, Y. Hu, H. Z. Lin, X. M. Tao, Y. L. Li, W. Chen. High-performance graphdiyne-based electrochemical actuators. Nat. Commun., 9, 752(2018).

    [65] C. S. Huang, S. L. Zhang, H. B. Liu, Y. J. Li, G. T. Cui, Y. L. Li. Graphdiyne for high capacity and long-life lithium storage. Nano Energy, 11, 481-489(2015).

    [66] Y. Fang, Y. R. Xue, Y. J. Li, H. D. Yu, L. Hui, Y. X. Liu, C. Y. Xing, C. Zhang, D. Y. Zhang, Z. Q. Wang, X. Chen, Y. Gao, B. L. Huang, Y. L. Li. Graphdiyne interface engineering: highly active and selective ammonia synthesis. Angew. Chem. Int. Ed., 59, 13021-13027(2020).

    [67] X. L. Sheng, C. Chen, H. Y. Liu, Z. Y. Chen, Z. M. Yu, Y. X. Zhao, S. Y. A. Yang. Two-dimensional second-order topological insulator in graphdiyne. Phys. Rev. Lett., 123, 256402(2019).

    [68] L. M. Wu, Y. Z. Dong, J. L. Zhao, D. T. Ma, W. C. Huang, Y. Zhang, Y. Z. Wang, X. T. Jiang, Y. J. Xiang, J. Q. Li, Y. Q. Feng, J. L. Xu, H. Zhang. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater., 31, 1807981(2019).

    [69] J. Guo, R. C. Shi, R. Wang, Y. Z. Wang, F. Zhang, C. Wang, H. L. Chen, C. Y. Ma, Z. H. Wang, Y. Q. Ge, Y. F. Song, Z. Q. Luo, D. Y. Fan, X. T. Jiang, J. L. Xu, H. Zhang. Graphdiyne-polymer nanocomposite as a broadband and robust saturable absorber for ultrafast photonics. Laser Photon. Rev., 14, 1900367(2020).

    [70] K. Wu, B. H. Chen, X. Y. Zhang, S. F. Zhang, C. S. Guo, C. Li, P. S. Xiao, J. Wang, L. J. Zhou, W. W. Zou, J. P. Chen. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited). Opt. Commun., 406, 214-229(2018).

    [71] Z. Du, S. Yang, S. Li, J. Lou, S. Zhang, S. Wang, B. Li, Y. Gong, L. Song, X. Zou, P. M. Ajayan. Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature, 577, 492-496(2020).

    [72] J. Y. Zhao, D. J. Chen, B. Boateng, G. F. Zeng, Y. P. Han, C. Zhen, J. B. Goodenough, W. D. He. Atomic interlamellar ion path in polymeric separator enables long-life and dendrite-free anode in lithium ion batteries. J. Power Sources, 451, 227773(2020).

    [73] Z. X. Yang, L. F. Gao, H. L. Chen, F. Zhang, Q. Yang, X. H. Ren, S. Z. U. Din, C. Li, J. C. Leng, J. B. Zhang, Z. W. Lin, J. M. Wang, C. L. Li, H. Zhang. Broadband few-layer niobium carbide MXene as saturable absorber for solid-state lasers. Opt. Laser Technol., 142, 107199(2021).

    [74] S. C. Liu, S. G. Shang, R. D. Lv, Y. G. Wang, J. Wang, W. Ren, Y. S. Wang. Molybdenum carbide buried in D-shaped fibers as a novel saturable absorber device for ultrafast photonics applications. ACS Appl. Mater. Interfaces, 13, 19128-19137(2021).

    [75] A. Alagh, F. E. Annanouch, P. Umek, C. Bittencourt, A. Sierra-Castillo, E. Haye, J. F. Colomer, E. Llobet. CVD growth of self-assembled 2D and 1D WS2 nanomaterials for the ultrasensitive detection of NO2. Sens. Actuators B Chem., 326, 128813(2021).

    [76] L. L. Chen, L. Du, J. Li, L. L. Yang, Q. Yi, C. J. Zhao. Dissipative soliton generation from Yb-doped fiber laser modulated by mechanically exfoliated NbSe2. Front. Phys., 8, 320(2020).

    [77] Y. Zu, C. Zhang, X. Guo, W. Liang, J. Liu, L. Su, H. Zhang. A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 μm. Laser Phys. Lett., 16, 015803(2019).

    [78] X. Liu, Z. Wang, J. Zhang. 188 ns pulsed Ho:Sc2SiO5 laser operating at 2107.2 nm employing a few-layer graphene saturable absorber. Optik, 219, 164637(2020).

    [79] N. Cui, F. Zhang, Y. Q. Zhao, Y. P. Yao, Q. G. Wang, L. L. Dong, H. Y. Zhang, S. D. Liu, J. L. Xu, H. Zhang. The visible nonlinear optical properties and passively Q-switched laser application of a layered PtSe2 material. Nanoscale, 12, 1061-1066(2020).

    [80] B. Guo. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics. Chin. Opt. Lett., 16, 020004(2018).

    [81] M. Guo, L. P. Ma, W. C. Ren, T. S. Lai. Control of the ultrafast photo-electronic dynamics of a chemical-vapor-deposited-grown graphene by ozone oxidation. Photon. Res., 8, 17-23(2020).

    [82] Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, L. Qian. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber. Opt. Lett., 41, 56-59(2016).

    [83] C. Liu, G. R. Li, Y. R. Wang, X. C. Su, Y. Y. Xie, F. L. Gao, S. Kumar, B. Y. Zhang. Near-infrared all-fiber mode-locked laser based on vanadium carbide nanosheets. Optik, 260, 168792(2022).

    [84] Q. Wei, K. D. Niu, X. L. Han, H. N. Zhang, C. Zhang, C. Yang, B. Y. Man. Large energy pulses generation in a mode-locked Er-doped fiber laser based on CVD-grown Bi2Te3 saturable absorber. Opt. Mater. Express, 9, 3535-3545(2019).

    [85] B. Zhang, J. Liu, C. Wang, K. Yang, C. Lee, H. Zhang, J. He. Recent progress in 2D material-based saturable absorbers for all solid-state pulsed bulk lasers. Laser Photon. Rev., 14, 1900240(2019).

    [86] G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T.-C. Wu, H. Jussila, J.-B. Wu, P. Peng, P.-H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, T. Hasan. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun., 8, 278(2017).

    [87] Y. Li, Y. L. He, Y. Cai, S. Q. Chen, J. Liu, Y. Chen, Y. J. Xiang. Black phosphorus: broadband nonlinear optical absorption and application. Laser Phys. Lett., 15, 025301(2018).

    [88] Q. Wu, X. Jin, S. Chen, X. Jiang, Y. Hu, Q. Jiang, L. Wu, J. Li, Z. Zheng, M. Zhang, H. Zhang. MXene-based saturable absorber for femtosecond mode-locked fiber lasers. Opt. Express, 27, 10159-10170(2019).

    [89] Z. Wang, L. Zhan, J. Wu, Z. Zou, L. Zhang, K. Qian, L. He, X. Fang. Self-starting ultrafast fiber lasers mode-locked with alcohol. Opt. Lett., 40, 3699-3702(2015).

    [90] C. Y. Ma, P. Yin, K. Khan, A. K. Tareen, R. Huang, J. Du, Y. Zhang, Z. Shi, R. Cao, S. R. Wei, X. Wang, Y. Q. Ge, Y. F. Song, L. F. Gao. Broadband nonlinear photonics in few-layer borophene. Small, 17, 2006891(2021).

    [91] J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, H. Zhang. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep., 7, 42357(2017).

    [92] J. Li, Z. L. Zhang, L. Du, L. L. Miao, J. Yi, B. Huang, Y. H. Zou, C. J. Zhao, S. C. Wen. Highly stable femtosecond pulse generation from a MXene Ti3C2Tx (T = F, O, or OH) mode-locked fiber laser. Photon. Res., 7, 260-264(2019).

    [93] E. K. Ng, K. Y. Lau, H. K. Lee, N. M. Yusoff, A. R. Sarmani, M. F. Omar, M. A. Mahdi. L-band femtosecond fiber laser based on a reduced graphene oxide polymer composite saturable absorber. Opt. Mater. Express, 11, 59-72(2021).

    [94] H. Haris, H. Arof, A. R. Muhammad, C. L. Anyi, S. J. Tan, N. Kasim, S. W. Harun. Passively Q-switched and mode-locked erbium-doped fiber laser with topological insulator Bismuth Selenide (Bi2Se3) as saturable absorber at C-band region. Opt. Fiber Technol., 48, 117-122(2019).

    [95] C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, D. Y. Tang. Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker. Opt. Express, 20, 27888-27895(2012).

    [96] P. G. Yan, R. Y. Lin, S. C. Ruan, A. J. Liu, H. Chen. A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film. Opt. Express, 23, 154-164(2015).

    [97] P. F. Ma, W. Lin, H. N. Zhang, S. H. Xu, Z. M. Yang. High-power large-energy rectangular mode-locked Er-doped fiber laser based on high-damage-threshold MoS2 saturable absorber. IEEE Photon. J., 11, 1504312(2019).

    [98] K. P. Wang, J. Wang, J. T. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Y. Feng, X. Y. Zhang, B. X. Jiang, Q. Z. Zhao, H. Z. Zhang, J. N. Coleman, L. Zhang, W. J. Blau. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 7, 9260-9267(2013).

    [99] M. M. Wu, X. Li, K. Wu, D. D. Wu, S. X. Dai, T. F. Xu, Q. H. Nie. All-fiber 2 μm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber. Opt. Fiber Technol., 47, 152-157(2019).

    [100] C. Cheng, H. L. Liu, Y. Tan, J. R. V. de Aldana, F. Chen. Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide. Opt. Express, 24, 10385-10390(2016).

    [101] W. J. Liu, L. H. Pang, H. N. Han, M. L. Liu, M. Lei, S. B. Fang, H. Teng, Z. Y. Wei. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Opt. Express, 25, 2950-2959(2017).

    [102] S. F. Zhang, N. N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. X. Li, X. Y. Zhang, Z. H. Chen, L. Zhang, G. S. Duesberg, J. Wang. Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 mono layer and few-layer films. ACS Nano, 9, 7142-7150(2015).

    [103] X. Jin, G. Hu, M. Zhang, Y. Hu, T. Albrow-Owen, R. C. T. Howe, T.-C. Wu, Q. Wu, Z. Zheng, T. Hasan. 102 fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser. Opt. Express, 26, 12506-12513(2018).

    [104] J. J. Feng, X. H. Li, T. C. Feng, Y. M. Wang, J. Liu, H. Zhang. Harmonic mode-locked Er-doped fiber laser by the evanescent field-based MXene Ti3C2Tx (T = F, O, or OH) saturable absorber. Ann. Phys., 532, 1900437(2019).

    [105] W. C. Huang, C. Y. Ma, C. Li, Y. Zhang, L. P. Hu, T. T. Chen, Y. F. Tang, J. F. Ju, H. Zhang. Highly stable MXene (V2CTx)-based harmonic pulse generation. Nanophotonics, 9, 2577-2585(2020).

    [106] C. Zhang, Q. Q. Hao, Y. Q. Zu, M. Y. Zong, J. Guo, F. Zhang, Y. Q. Ge, J. Liu. Graphdiyne saturable absorber for passively Q-switched Ho3+-doped laser. Nanomaterials, 10, 1848(2020).

    [107] J. Guo, Z. H. Wang, R. C. Shi, Y. Zhang, Z. W. He, L. F. Gao, R. Wang, Y. Q. Shu, C. Y. Ma, Y. Q. Ge, Y. F. Song, D. Y. Fan, J. L. Xu, H. Zhang. Graphdiyne as a promising mid-infrared nonlinear optical material for ultrafast photonics. Adv. Opt. Mater., 8, 2000067(2020).

    [108] J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Yang, Y. Z. Wu, S. D. Liu, B. T. Zhang. Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers. Opt. Lett., 37, 2652-2654(2012).

    [109] Y. R. Wang, B. T. Zhang, H. Yang, J. Hou, X. C. Su, Z. P. Sun, J. L. He. Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror. J. Lightwave Technol., 37, 2927-2931(2019).

    [110] S. D. D. Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, F. Pirzio. Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber. Opt. Lett., 38, 1745-1747(2013).

    [111] G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, D. Y. Tang. Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength [Invited]. Opt. Mater. Express, 2, 878-883(2012).

    [112] J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, D. Y. Tang. Graphene mode-locked femtosecond laser at 2 μm wavelength. Opt. Lett., 37, 2085-2087(2012).

    [113] J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, U. Griebner, V. Petrov, H. H. Yu, H. J. Zhang, J. Y. Wang. Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers. Sci. Rep., 4, 5016(2014).

    [114] J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, J. Xu. Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser. Laser Phys. Lett., 9, 15-19(2012).

    [115] H. L. Wan, W. Cai, F. Wang, S. Z. Jiang, S. C. Xu, J. Liu. High-quality monolayer graphene for bulk laser mode-locking near 2 μm. Opt. Quantum Electron., 48, 11(2016).

    [116] M. Paris, A. Tyazhev, P. Loiko, R. Soulard, J. L. Doualan, L. Guillemot, A. Braud, T. Godin, P. Camy, A. Hideur. Passively mode-locked diode-pumped Tm,Ho:LiYF4 laser. Laser Phys. Lett., 17, 045801(2020).

    [117] R. Sun, C. Chen, W. J. Ling, Y. N. Zhang, C. P. Kang, Q. Xu. Watt-level passively Q-switched mode-locked Tm: LuAG laser with graphene oxide saturable absorber. Acta Phys. Sin., 68, 104207(2019).

    [118] A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, A. C. Ferrari. 2 μm solid-state laser mode-locked by single-layer graphene. Appl. Phys. Lett., 102, 013113(2013).

    [119] G. Zhang, Y. G. Wang, J. Wang, Z. Y. Jiao. Passively Q-switched and mode-locked YVO4/Nd:YVO4/Nd:YVO4 laser based on a MoS2 saturable absorber at 1342.5 nm. Opt. Laser Technol., 109, 293-296(2019).

    [120] L. J. Li, T. Q. Qi, W. Q. Xie, X. N. Yang, L. Zhou, S. C. Li, H. B. Wu, Y. J. Shen. A passively mode-locked Tm:YAG laser with a titanium disulfide saturable absorber. Infrared Phys. Technol., 119, 103942(2021).

    [121] W. J. Ling, T. Xia, Z. Dong, Q. Liu, F. P. Lu, Y. G. Wang. Passively Q-switched mode-locked Tm, Ho:LLF laser with a WS2 saturable absorber. Acta Phys. Sin., 66, 114207(2017).

    [122] L. J. Li, L. Zhou, T. X. Li, X. N. Yang, W. Q. Xie, X. M. Duan, Y. J. Shen, Y. Q. Yang, W. L. Yang, H. Zhang. Passive mode-locking operation of a diode-pumped Tm:YAG laser with a MoS2 saturable absorber. Opt. Laser Technol., 124, 105986(2020).

    [123] C. Chen, W. J. Ling, R. Sun, Q. Xu, Y. N. Zhang. Watt-level dual-wavelength Q-switched mode-locked all-solid-state Tm:CYA laser. Front. Phys., 7, 252(2020).

    [124] X. Zou, Y. X. Leng, Y. Y. Li, Y. Y. Feng, P. X. Zhang, Y. Hang, J. Wang. Passively Q-switched mode-locked Tm:LLF laser with a MoS2 saturable absorber. Chin. Opt. Lett., 13, 081405(2015).

    [125] C. Zhang, P. G. Ge, X. W. Fan, J. Liu, S. Z. Jiang, Y. Y. Xu, B. Y. Man. MoS2 saturable absorber for a Q-switched mode-locked 2 μm laser. Laser Phys., 29, 015803(2019).

    [126] X. L. Sun, H. K. Nie, J. L. He, R. W. Zhao, X. C. Su, Y. R. Wang, B. T. Zhang, R. H. Wang, K. J. Yang. Passively mode-locked 1.34 μm bulk laser based on few-layer black phosphorus saturable absorber. Opt. Express, 25, 20025-20032(2017).

    [127] L. L. Tao, X. W. Huang, J. S. He, Y. J. Lou, L. H. Zeng, Y. H. Li, H. Long, J. B. Li, L. Zhang, Y. H. Tsang. Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd:LuVO4 laser. Photon. Res., 6, 750-755(2018).

    [128] J. Ma, H. T. Huang, K. J. Ning, X. D. Xu, G. Q. Xie, L. J. Qian, K. P. Loh, D. Y. Tang. Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser. Opt. Lett., 41, 890-893(2016).

    [129] G. Zhao, J. Hou, Y. Z. Wu, J. L. He, X. P. Hao. Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation. Adv. Opt. Mater., 3, 937-942(2015).

    [130] H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express, 17, 17630-17635(2009).

    [131] B. Fu, Y. Hua, X. S. Xiao, H. W. Zhu, Z. P. Sun, C. X. Yang. Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 μm. IEEE J. Sel. Top. Quantum Electron., 20, 1100705(2014).

    [132] Z. D. Chen, H. Y. Wang, Y. G. Wang, R. D. Lv, X. G. Yang, J. Wang, L. Li, W. Ren. Improved optical damage threshold graphene oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers. Carbon, 144, 737-744(2019).

    [133] O. Kovalchuk, S. Uddin, S. Lee, Y. W. Song. Graphene capacitor-based electrical switching of mode-locking in all-fiberized femtosecond lasers. ACS Appl. Mater. Interfaces, 12, 54005-54011(2020).

    [134] F. Ai, X. W. Li, J. Q. Qian. Dual-wavelength mode-locked fiber laser based on graphene materials. Eur. Phys. J. Spec. Top., 231, 643-649(2021).

    [135] L. Y. Tsai, Z. Y. Li, J. H. Lin, Y. F. Song, H. Zhang. Wavelength tunable passive-mode locked Er-doped fiber laser based on graphene oxide nano-platelet. Opt. Laser Technol., 140, 106932(2021).

    [136] J. Lee, J. Koo, Y. M. Jhon, J. H. Lee. A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator. Opt. Express, 22, 6165-6173(2014).

    [137] Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, G. R. Lin. Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers. ACS Photon., 2, 481-490(2015).

    [138] J. Koo, J. Lee, J. H. Lee. Integrated fiber-optic device based on a combination of a piezoelectric transducer and a bulk-structured Bi2Te3 topological insulator for Q-switched mode-locking of a fiber laser. J. Lightwave Technol., 35, 2175-2182(2017).

    [139] G. B. Jiang, Y. Zhou, L. L. Wang, Y. Chen. PMMA sandwiched Bi2Te3 layer as a saturable absorber in mode-locked fiber laser. Adv. Condens. Matter Phys., 2018, 7578050(2018).

    [140] L. Jin, X. H. Ma, H. Zhang, H. W. Zhang, H. L. Chen, Y. T. Xu. 3 GHz passively harmonic mode-locked Er-doped fiber laser by evanescent field-based nano-sheets topological insulator. Opt. Express, 26, 31244-31252(2018).

    [141] K. X. Li, Y. R. Song, J. R. Tian, H. Y. Guoyu, R. Q. Xu. Analysis of bound-soliton states in a dual-wavelength mode-locked fiber laser based on Bi2Se3. IEEE Photon. J., 9, 1400209(2017).

    [142] Q. X. Guo, J. Pan, Y. J. Liu, H. P. Si, Z. Y. Lu, X. L. Han, J. J. Gao, Z. T. Zu, H. N. Zhang, S. Z. Jiang. Output energy enhancement in a mode-locked Er-doped fiber laser using CVD-Bi2Se3 as a saturable absorber. Opt. Express, 27, 24670-24681(2019).

    [143] Q. X. Guo, X. W. Fan, J. J. Gao, X. L. Han, H. N. Zhang, Y. S. Han, S. Z. Jiang. Bi2Se3/mica optical modulator for high-energy mode-locked Er-doped fiber laser. Infrared Phys. Technol., 111, 103453(2020).

    [144] J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, K. M. Abramski. Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator. Laser Phys., 24, 105111(2014).

    [145] J. Sotor, G. Sobon, K. Grodecki, K. M. Abramski. Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator. Appl. Phys. Lett., 104, 251112(2014).

    [146] J. Sotor, G. Sobon, W. Macherzynski, K. M. Abramski. Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber. Laser Phys. Lett., 11, 055102(2014).

    [147] W. J. Liu, L. H. Pang, H. N. Han, W. L. Tian, H. Chen, M. Lei, P. G. Yan, Z. Y. Wei. 70-fs mode-locked erbium-doped fiber laser with topological insulator. Sci. Rep., 6, 19997(2016).

    [148] Z. H. Wang, C. Y. Li, J. W. Ye, Z. Wang, Y. G. Liu. Generation of harmonic mode-locking of bound solitons in the ultrafast fiber laser with Sb2Te3 saturable absorber on microfiber. Laser Phys. Lett., 16, 025103(2019).

    [149] C. Y. Song, H. Zhang, L. Jin, X. H. Ma, Y. G. Zou, L. L. Shi, Y. T. Xu. Study on the energy band regulation of Bi2-xSbxTe3 and its application as mode locking material in low gain ultrafast fiber laser. Adv. Opt. Mater., 8, 1901618(2020).

    [150] E. J. Aiub, D. Steinberg, E. A. T. de Souza, L. A. M. Saito. 200-fs mode-locked erbium-doped fiber laser by using mechanically exfoliated MoS2 saturable absorber onto D-shaped optical fiber. Opt. Express, 25, 10546-10552(2017).

    [151] L. Li, Y. L. Su, Y. G. Wang, X. Wang, Y. S. Wang, X. H. Li, D. Mao, J. H. Si. Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber. IEEE J. Sel. Top. Quantum Electron., 23, 1100306(2017).

    [152] B. Guo, S. Li, Y. X. Fan, P. F. Wang. Versatile soliton emission from a WS2 mode-locked fiber laser. Opt. Commun., 406, 66-71(2018).

    [153] D. Mao, Y. D. Wang, C. J. Ma, L. Han, B. Q. Jiang, X. T. Gan, S. J. Hua, W. D. Zhang, T. Mei, J. L. Zhao. WS2 mode-locked ultrafast fiber laser. Sci. Rep., 5, 7965(2015).

    [154] Z. H. Wang, Z. Wang, Y. G. Liu, R. J. He, S. M. Han, G. D. Wang, G. Yang, X. Q. Wang. Noise-like pulses generated from a passively mode-locked fiber laser with a WS2 saturable absorber on microfiber. Laser Phys. Lett., 15, 085103(2018).

    [155] W. J. Liu, M. L. Liu, Y. Y. Ou Yang, H. R. Hou, G. L. Ma, M. Lei, Z. Y. Wei. Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration. Nanotechnology, 29, 174002(2018).

    [156] D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, J. L. Zhao. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Sci. Rep., 6, 23583(2016).

    [157] D. Mao, B. B. Du, D. X. Yang, S. L. Zhang, Y. D. Wang, W. D. Zhang, X. Y. She, H. C. Cheng, H. B. Zeng, J. L. Zhao. Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets. Small, 12, 1489-1497(2016).

    [158] X. Zhu, S. Chen, M. Zhang, L. Chen, Q. Wu, J. Zhao, Q. Jiang, Z. Zheng, H. Zhang. TiS2-based saturable absorber for ultrafast fiber lasers. Photon. Res., 6, C44-C48(2018).

    [159] X. X. Shang, L. G. Guo, H. N. Zhang, D. W. Li, Q. Y. Yue. Titanium disulfide based saturable absorber for generating passively mode-locked and Q-switched ultra-fast fiber lasers. Nanomaterials, 10, 1922(2020).

    [160] T. C. Feng, D. Zhang, X. H. Li, Q. Abdul, Z. J. Shi, J. B. Lu, P. L. Guo, Y. Zhang, J. S. Liu, Q. J. Wang. SnS2 nanosheets for Er-doped fiber lasers. ACS Appl. Nano Mater., 3, 674-681(2020).

    [161] D. Zhang, C. X. Zhang, X. H. Li, A. Qyyum. Layered iron pyrite for ultrafast photonics application. Nanophotonics, 9, 2515-2522(2020).

    [162] J. Lei, J. Wang, X. Wang, Z. Wei. Ternary 2D Mo(1-x)WxS2 as a saturable absorber for femtosecond mode-locked all fiber lasers. Opt. Laser Technol., 145, 107482(2022).

    [163] C. X. Dou, W. Wen, J. L. Wang, M. Y. Ma, L. M. Xie, C. H. Ho, Z. Y. Wei. Ternary ReS2(1-x)Se2x alloy saturable absorber for passively Q-switched and mode-locked erbium-doped all-fiber lasers. Photon. Res., 7, 283-288(2019).

    [164] Y. Chen, G. B. Jiang, S. Q. Chen, Z. N. Guo, X. F. Yu, C. J. Zhao, H. Zhang, Q. L. Bao, S. C. Wen, D. Y. Tang, D. Y. Fan. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 23, 12823-12833(2015).

    [165] M. H. M. Ahmed, A. A. Latiff, H. Arof, S. W. Harun. Ultrafast erbium-doped fiber laser mode-locked with a black phosphorus saturable absorber. Laser Phys. Lett., 13, 095104(2016).

    [166] Y. Chen, S. Q. Chen, J. Liu, Y. X. Gao, W. J. Zhang. Sub-300 femtosecond soliton tunable fiber laser with all-anomalous dispersion passively mode locked by black phosphorus. Opt. Express, 24, 13316-13324(2016).

    [167] Y. H. Xu, X. F. Jiang, Y. Q. Ge, Z. N. Guo, Z. K. Zeng, Q. H. Xu, H. Zhang, X. F. Yu, D. Y. Fan. Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. J. Mater. Chem. C, 5, 3007-3013(2017).

    [168] L. Yun. Black phosphorus saturable absorber for dual-wavelength polarization-locked vector soliton generation. Opt. Express, 25, 32380-32385(2017).

    [169] W. L. Li, G. W. Chen, G. M. Wang, C. Zeng, W. Zhao. Wideband wavelength-tunable ultrafast fiber laser based on black phosphorus saturable absorber. Laser Phys. Lett., 15, 125102(2018).

    [170] M. Liu, X. F. Jiang, Y. R. Yan, X. D. Wang, A. P. Luo, W. C. Xu, Z. C. Luo. Black phosphorus quantum dots for femtosecond laser photonics. Opt. Commun., 406, 85-90(2018).

    [171] D. Mao, M. K. Li, X. Q. Cui, W. D. Zhang, H. Lu, K. Song, J. L. Zhao. Stable high-power saturable absorber based on polymer-black-phosphorus films. Opt. Commun., 406, 254-259(2018).

    [172] X. X. Jin, G. H. Hu, M. Zhang, T. Albrow-Owen, Z. Zheng, T. Hasan. Environmentally stable black phosphorus saturable absorber for ultrafast laser. Nanophotonics, 9, 2445-2449(2020).

    [173] Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, Y. M. Jhon. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater., 29, 1702496(2017).

    [174] J. Yi, L. Du, J. Li, L. L. Yang, L. Y. Hu, S. H. Huang, Y. C. Dong, L. L. Miao, S. C. Wen, V. N. Mochalin, C. J. Zhao, A. M. Rao. Unleashing the potential of Ti2CTx MXene as a pulse modulator for mid-infrared fiber lasers. 2D Mater., 6, 045038(2019).

    [175] H. Ahmad, R. Ramli, N. Yusoff, S. A. Reduan, A. K. Zamzuri, K. Thambiratnam. Performance of Nb2C MXene coated on tapered fiber as saturable absorber for the generation of mode-locked erbium-doped fiber laser. Infrared Phys. Technol., 114, 103647(2021).

    [176] L. F. Gao, C. Y. Ma, S. R. Wei, A. V. Kuklin, H. Zhang, H. Agren. Applications of few-layer Nb2C MXene: narrow-band photodetectors and femtosecond mode-locked fiber lasers. ACS Nano, 15, 954-965(2021).

    [177] S. X. Liu, J. S. Lu, H. F. Huang, N. Xu, J. L. Qu, Q. Wen. Ultrafast photonics applications based on evanescent field interactions with 2D molybdenum carbide (Mo2C). J. Mater. Chem. C, 9, 6187-6192(2021).

    [178] S. C. Liu, Y. G. Wang, R. D. Lv, J. Wang, H. Z. Wang, Y. Wang, L. N. Duan. 2D molybdenum carbide (Mo2C)/fluorine mica (FM) saturable absorber for passively mode-locked erbium-doped all-fiber laser. Nanophotonics, 9, 2523-2530(2020).

    [179] Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, H. Zhang. Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers. IEEE J. Sel. Top. Quantum Electron., 23, 8800105(2017).

    [180] W. Liu, Y.-N. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, M. Lei, L.-M. Liu, Z. Wei. Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials. Photon. Res., 6, 220-227(2018).

    [181] W. J. Liu, M. L. Liu, B. Liu, R. G. Quhe, M. Lei, S. B. Fang, H. Teng, Z. Y. Wei. Nonlinear optical properties of MoS2-WS2 heterostructure in fiber lasers. Opt. Express, 27, 6689-6699(2019).

    [182] J. J. Feng, X. H. Li, G. Q. Zhu, Q. J. Wang. Emerging high-performance SnS/CdS nanoflower heterojunction for ultrafast photonics. ACS Appl. Mater. Interfaces, 12, 43098-43105(2020).

    [183] H. H. Liu, Z. L. Li, W. Song, Y. Yu, F. F. Pang, T. Y. Wang. MoS2/graphene heterostructure incorporated passively mode-locked fiber laser: from anomalous to normal average dispersion. Opt. Mater. Express, 10, 46-56(2020).

    [184] L. F. Zhang, J. F. Liu, J. Z. Li, Z. Wang, Y. W. Wang, Y. Q. Ge, W. L. Dong, N. Xu, T. C. He, H. Zhang, W. J. Zhang. Site-selective Bi2Te3-FeTe2 heterostructure as a broadband saturable absorber for ultrafast photonics. Laser Photon. Rev., 14, 1900409(2020).

    [185] X. F. Xia, C. Y. Ma, H. L. Chen, K. Khan, A. K. Tateen, Q. L. Xiao. Nonlinear optical properties and ultrafast photonics of 2D BP/Ti3C2 heterostructures. Opt. Mater., 112, 110809(2021).

    [186] L. L. Chen, J. Huang, N. Li, H. Zhu, J. B. Hu, L. L. Miao, C. J. Zhao. Broadband nonlinear optical modulator enabled by VO2/V2O5 core-shell heterostructures. Nanophotonics, 11, 2931-2938(2022).

    [187] B. L. Lu, Y. Fang, C. Y. Lv, M. Qi, H. W. Chen, J. T. Bai. Single- and bound-state soliton mode-locked Er-doped fiber laser based on graphene/WS2 nanocomposites saturable absorber. Infrared Phys. Technol., 121, 104024(2022).

    [188] Y. Shu, Z. Zhong, C. Ma, P. Guo, L. Wu, Z. Lin, X. Yuan, J. Li, W. Chen, Q. Xiao. 2D BP/InSe heterostructures as a nonlinear optical material for ultrafast photonics. Nanomaterials, 12, 1809(2022).

    [189] Y. Zhao, P. L. Guo, X. H. Li, Z. W. Jin. Ultrafast photonics application of graphdiyne in the optical communication region. Carbon, 149, 336-341(2019).

    [190] Z. J. Shi, X. H. Li, Y. N. Zhang, H. Q. Li, Y. Zhao, P. L. Guo, Y. X. Guo. Graphdiyne for ultrashort pulse generation in an erbium-doped hybrid mode-locked fiber laser. Front. Phys., 7, 150(2019).

    [191] W. Z. Ma, P. Yin, M. M. Li, L. Sui, T. S. Wang, Z. Q. Liu, L. Du, W. L. Bao, Y. Q. Ge. Graphdiyne-decorated microfiber based soliton and noise-like pulse generation. Nanophotonics, 10, 3967-3977(2021).

    [192] Q. Wu, S. Chen, W. L. Bao, H. B. Wu. Femtosecond pulsed fiber laser based on graphdiyne-modified tapered fiber. Nanomaterials, 12, 2050(2022).

    [193] M. Pawliszewska, T. Martynkien, A. Przewloka, J. Sotor. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber. Opt. Lett., 43, 38-41(2018).

    [194] Z. Q. Luo, Y. Y. Li, Y. Z. Huang, M. Zhong, X. J. Wan. Graphene mode-locked and Q-switched 2-μm Tm/Ho codoped fiber lasers using 1212-nm high-efficient pumping. Opt. Eng., 55, 081310(2016).

    [195] J. Sotor, J. Boguslawski, T. Martynkien, P. Mergo, A. Krajewska, A. Przewloka, W. Strupinski, G. Sobon. All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber. Opt. Lett., 42, 1592-1595(2017).

    [196] M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, J. R. Taylor. Tm-doped fiber laser mode-locked by graphene-polymer composite. Opt. Express, 20, 25077-25084(2012).

    [197] K. Y. Lau, M. Z. Zulkifli. 1.56 μm and 1.93 μm synchronized mode-locked fiber laser with graphene saturable absorber. Infrared Phys. Technol., 112, 103606(2021).

    [198] G. Sobon, J. Sotor, A. Przewolka, I. Pasternak, W. Strupinski, K. Abramski. Amplification of noise-like pulses generated from a graphene-based Tm-doped all-fiber laser. Opt. Express, 24, 20359-20364(2016).

    [199] M. Jung, J. Lee, J. Koo, J. Park, Y. W. Song, K. Lee, S. Lee, J. H. Lee. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator. Opt. Express, 22, 7865-7874(2014).

    [200] K. Yin, B. Zhang, L. Li, T. Jiang, X. F. Zhou, J. Hou. Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm. Photon. Res., 3, 72-76(2015).

    [201] J. Lee, J. H. Lee. Femtosecond Tm-Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator. Chin. Phys. B, 27, 094219(2018).

    [202] J. T. Wang, J. D. Yin, T. C. He, P. G. Yan. Sb2Te3 mode-locked ultrafast fiber laser at 1.93 μm. Chin. Phys. B, 27, 084214(2018).

    [203] X. H. Ma, W. Chen, L. Tong, S. Q. Liu, W. W. Dai, S. S. Ye, Z. Q. Zheng, Y. Y. Wang, Y. Zhou, W. Zhang, W. T. Fang, X. L. Chen, M. S. Liao, W. Q. Gao. Experimental demonstration of harmonic mode-locking in Sb2Se3-based thulium-doped fiber laser. Opt. Laser Technol., 143, 107286(2021).

    [204] J. Lee, J. Koo, J. Lee, Y. M. Jhon, J. H. Lee. All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber. Opt. Mater. Express, 7, 2968-2979(2017).

    [205] J. T. Wang, W. Lu, J. R. Li, H. Chen, Z. K. Jiang, J. Z. Wang, W. F. Zhang, M. Zhang, I. L. Li, Z. H. Xu, W. J. Liu, P. G. Yan. Ultrafast thulium-doped fiber laser mode locked by monolayer WSe2. IEEE J. Sel. Top. Quantum Electron., 24, 1100706(2018).

    [206] M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, J. H. Lee. Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction. Opt. Express, 23, 19996-20006(2015).

    [207] J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. C. He, P. G. Yan, S. C. Ruan. Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser. Opt. Lett., 42, 5010-5013(2017).

    [208] J. T. Wang, H. Chen, Z. K. Jiang, J. D. Yin, J. Z. Wang, M. Zhang, T. C. He, J. Z. Li, P. G. Yan, S. C. Ruan. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride. Opt. Lett., 43, 1998-2001(2018).

    [209] H. Yu, X. Zheng, K. Yin, X. A. Cheng, T. Jiang. Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber. Appl. Opt., 54, 10290-10294(2015).

    [210] M. Pawliszewska, Y. Q. Ge, Z. J. Li, H. Zhang, J. Sotor. Fundamental and harmonic mode-locking at 2.1 μm with black phosphorus saturable absorber. Opt. Express, 25, 16916-16921(2017).

    [211] Q. Zhang, X. X. Jin, G. H. Hu, M. Zhang, Z. Zheng, T. Hasan. Sub-150 fs dispersion-managed soliton generation from an all-fiber Tm-doped laser with BP-SA. Opt. Express, 28, 34104-34110(2020).

    [212] H. Ahmad, R. Ramli, N. N. Ismail, S. N. Aidit, N. Yusoff, M. Z. Samion. Passively mode locked thulium and thulium/holmium doped fiber lasers using MXene Nb2C coated microfiber. Sci. Rep., 11, 11652(2021).

    [213] H. Ahmad, R. Ramli, S. A. Reduan, M. F. Ismail, M. Yasin. Mode-locked thulium/holmium-doped fiber laser with vanadium carbide deposited on tapered fiber. Opt. Fiber Technol., 65, 102589(2021).

    [214] J. Lee, S. Y. Kwon, J. H. Lee. Investigation on the nonlinear optical properties of V2C MXene at 1.9 μm. J. Mater. Chem. C, 9, 15346-15353(2021).

    [215] D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, A. C. Ferrari. Few-cycle pulses from a graphene mode-locked all-fiber laser. Appl. Phys. Lett., 106, 253101(2015).

    [216] J. Koo, J. Park, J. Lee, Y. M. Jhon, J. H. Lee. Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber. Opt. Express, 24, 10575-10589(2016).

    [217] Z. Hong, X. Jiang, M. Zhang, H. Zhang, X. Liu. High power and large-energy pulse generation in an erbium-doped fiber laser by a ferromagnetic insulator-Cr2Si2Te6 saturable absorber. Nanomaterials, 12, 564(2022).

    [218] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum. Two-dimensional transition metal carbides. ACS Nano, 6, 1322-1331(2012).

    [219] M. Naguib, J. Come, B. Dyatkin, V. Presser, P. L. Taberna, P. Simon, M. W. Barsoum, Y. Gogotsi. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun., 16, 61-64(2012).

    [220] Q. Tang, Z. Zhou, P. W. Shen. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc., 134, 16909-16916(2012).

    [221] M. Zhang, Q. Wu, H. L. Chen, Z. Zheng, H. Zhang. Fiber-based all-optical modulation based on two-dimensional materials. 2D Mater., 8, 012003(2021).

    [222] S. Liu, Z. Li, Y. Ge, H. Wang, R. Yue, X. Jiang, J. Li, Q. Wen, H. Zhang. Graphene/phosphorene nano-heterojunction: facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance. Photon. Res., 5, 662-668(2017).

    [223] Q. Yang, X. Y. Zhang, Z. X. Yang, X. H. Ren, J. Wang, Q. D. Li, X. L. Cui, X. L. Zhu. Broadband gamma-graphyne saturable absorber for Q-switched solid-state laser. Appl. Phys. Express, 12, 122006(2019).

    [224] Y. Q. Zu, J. Guo, Q. Q. Hao, F. Zhang, C. Wang, J. Liu, B. Wang. Graphdiyne as a saturable absorber for 2-μm all-solid-state Q-switched laser. Sci. China Mater., 64, 683-690(2021).

    [225] X. Q. Liu, J. Guo, L. H. Zheng, J. Liu, Q. Q. Peng, Y. Q. Ge, J. Xu. Two-dimensional graphdiyne for passively Q-switched Yb3+:Sc2SiO5 laser. Microw. Opt. Technol. Lett., 63, 2292-2296(2021).

    [226] S. Chen, R. Cao, X. Chen, Q. Wu, Y. H. Zeng, S. Gao, Z. N. Guo, J. L. Zhao, M. Zhang, H. Zhang. Anisotropic plasmonic nanostructure induced polarization photoresponse for MoS2-based photodetector. Adv. Mater. Interfaces, 7, 1902179(2020).

    [227] X. Tang, Y. L. Zheng, B. Cao, Q. Wu, J. H. Liang, W. L. Wang, G. Q. Li. GaN nanowire/Nb-doped MoS2 nanoflake heterostructures for fast UV-visible photodetectors. ACS Appl. Nano Mater., 5, 4515-4523(2022).

    [228] W. C. Huang, C. Y. Xing, Y. Z. Wang, Z. J. Li, L. M. Wu, D. T. Ma, X. Y. Dai, Y. J. Xiang, J. Q. Li, D. Y. Fan, H. Zhang. Facile fabrication and characterization of two-dimensional bismuth(III) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale, 10, 2404-2412(2018).

    [229] C. Wang, Y. Z. Wang, X. T. Jiang, J. W. Xu, W. C. Huang, F. Zhang, J. F. Liu, F. M. Yang, Y. F. Song, Y. Q. Ge, Q. Wu, M. Zhang, H. Chen, J. Liu, H. Zhang. MXene Ti3C2Tx: a promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv. Opt. Mater., 7, 1900060(2019).

    [230] Q. Wu, W. C. Huang, Y. Z. Wang, C. Wang, Z. Zheng, H. Chen, M. Zhang, H. Zhang. All-optical control of microfiber knot resonator based on 2D Ti2CTx MXene. Adv. Opt. Mater., 8, 1900977(2020).

    [231] Q. Wu, S. Chen, Y. Z. Wang, L. M. Wu, X. T. Jiang, F. Zhang, X. X. Jin, Q. Y. Jiang, Z. Zheng, J. Q. Li, M. Zhang, H. Zhang. MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol., 4, 1800532(2019).

    [232] R. Wang, Q. Wu, X. T. Jiang, T. J. Fan, J. Guo, C. Wang, F. Zhang, Y. L. Gao, M. Zhang, Z. Q. Luo, H. Zhang. A few-layer InSe-based sensitivity-enhanced photothermal fiber sensor. J. Mater. Chem. C, 8, 132-138(2020).

    Qing Wu, Gang Zhao, Haibin Wu, Meng Zhang. Open-ended exploration of ultrashort pulse lasers: an innovative design strategy for devices based on 2D materials[J]. Photonics Research, 2023, 11(7): 1238
    Download Citation