• Acta Optica Sinica
  • Vol. 41, Issue 1, 0123003 (2021)
Shulin Sun1, Qiong He2, Jiaming Hao3, Shiyi Xiao4, and Lei Zhou2、*
Author Affiliations
  • 1Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
  • 2Physics Department, Fudan University, Shanghai 200433, China
  • 3Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 4Department of Communication & Information Engineering, Shanghai University, Shanghai 200444, China;
  • show less
    DOI: 10.3788/AOS202141.0123003 Cite this Article Set citation alerts
    Shulin Sun, Qiong He, Jiaming Hao, Shiyi Xiao, Lei Zhou. High-Efficiency Manipulations on Electromagnetic Waves with Metasurfaces[J]. Acta Optica Sinica, 2021, 41(1): 0123003 Copy Citation Text show less
    References

    [1] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 10, 509-514(1968). http://adsabs.harvard.edu/abs/1968SvPhU..10..509V

    [2] Pendry J B, Holden A J, Stewart W J et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 76, 4773-4776(1996). http://www.researchgate.net/publication/13229907_extremely_low_frequency_plasmons_in_metallic_mesostructures

    [3] Pendry J B, Holden A J, Robbins D J et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=2507661&site=ehost-live

    [4] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001). http://www.opticsinfobase.org/abstract.cfm?uri=ol-27-11-885

    [5] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000).

    [6] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 312, 1780-1782(2006).

    [7] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).

    [8] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [9] Sun S, He Q, Xiao S et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [10] Sun S L, He Q, Hao J M et al. Electromagnetic metasurfaces: physics and applications[J]. Advances in Optics and Photonics, 11, 380-479(2019). http://www.researchgate.net/publication/333879482_electromagnetic_metasurfaces_physics_and_applications

    [11] Hao J, Yuan Y, Ran L et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 99, 063908(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000099000006063908000001&idtype=cvips&gifs=yes

    [12] Sievenpiper D, Zhang L J. Broas R F J, et al. High-impedance electromagnetic surfaces with a forbidden frequency band[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2059-2074(1999).

    [13] Hao J M, Zhou L, Chan C T. An effective-medium model for high-impedance surfaces[J]. Applied Physics A, 87, 281-284(2007). http://link.springer.com/10.1007/s00339-006-3825-4

    [14] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013). http://europepmc.org/abstract/MED/23686344

    [15] Ma S J, Wang X K, Luo W J et al. Ultra-wide band reflective metamaterial wave plates for terahertz waves[J]. Europhysics Letters, 117, 37007(2017). http://www.researchgate.net/publication/315931418_Ultra-wide_band_reflective_metamaterial_wave_plates_for_terahertz_waves

    [16] Hao J M, Ren Q J, An Z H et al. Optical metamaterial for polarization control[J]. Physical Review A, 80, 023807(2009).

    [17] Pors A, Nielsen M G, Bozhevolnyi S I. Broadband plasmonic half-wave plates in reflection[J]. Optics Letters, 38, 513-515(2013).

    [18] Jiang S C, Xiong X, Hu Y S et al. Controlling the polarization state of light with a dispersion-free metastructure[J]. Physical Review X, 4, 021026(2014). http://meetings.aps.org/meeting/mar15/session/f6.6

    [19] Sun W J, He Q, Hao J M et al. A transparent metamaterial to manipulate electromagnetic wave polarizations[J]. Optics Letters, 36, 927-929(2011).

    [20] Zhou L, Wen W J, Chan C T et al. Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields[J]. Physical Review Letters, 94, 243905(2005). http://dialnet.unirioja.es/servlet/articulo?codigo=1244487

    [21] Martín-Moreno L. García-Vidal F J, Lezec H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Physical Review Letters, 86, 1114-1117(2001).

    [22] Ni X, Emani N K, Kildishev A V et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 335, 427(2012).

    [23] Sun S, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 12, 6223-6229(2012). http://europepmc.org/abstract/MED/23189928

    [24] Huang L L, Chen X Z, Bai B F et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2, e70(2013).

    [25] Pors A, Nielsen M G, Bernardin T et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons[J]. Light: Science & Applications, 3, e197(2014). http://www.nature.com/articles/lsa201478/

    [26] Sun W J, He Q, Sun S L et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations[J]. Light: Science & Applications, 5, e16003(2016).

    [27] Li X, Xiao S Y, Cai B G et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters, 37, 4940-4942(2012).

    [28] Chen X Z, Huang L L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).

    [29] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014). http://europepmc.org/abstract/med/25035488

    [30] Aieta F, Kats M A, Genevet P et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 347, 1342-1345(2015). http://europepmc.org/abstract/med/25700175

    [31] Khorasaninejad M, Shi Z, Zhu A Y et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 17, 1819-1824(2017).

    [32] Wang S, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017). http://www.ncbi.nlm.nih.gov/pubmed/28775300

    [33] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [34] Yin X B, Ye Z L, Rho J et al. Photonic spin Hall effect at metasurfaces[J]. Science, 339, 1405-1407(2013).

    [35] Luo W J, Xiao S Y, He Q et al. Photonic spin Hall effect with nearly 100% efficiency[J]. Advanced Optical Materials, 3, 1102-1108(2015).

    [36] Luo W J, Sun S L, Xu H X et al. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency[J]. Physical Review Applied, 7, 044033(2017).

    [37] Luo X G, Pu M B, Li X et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light, Science & Applications, 6, e16276(2017).

    [38] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 4, 2807(2013).

    [39] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 4, 2808(2013). http://pubs.acs.org/servlet/linkout?suffix=ref26/cit26&dbid=16&doi=10.1021%2Facs.nanolett.6b01897&key=10.1038%2Fncomms3808

    [40] Chen W T, Yang K Y, Wang C M et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 14, 225-230(2014).

    [41] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [42] Li L, Cui T J, Ji W et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 8, 197(2017).

    [43] Genevet P, Yu N F, Aieta F et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 100, 013101(2012).

    [44] Huang L, Chen X, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 12, 5750-5755(2012).

    [45] Pfeiffer C, Grbic A. Controlling vector Bessel beams with metasurfaces[J]. Physical Review Applied, 2, 044012(2014). http://adsabs.harvard.edu/abs/2014PhRvP...2d4012P

    [46] Ma X, Pu M, Li X et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 5, 10365(2015). http://go.nature.com/collectmeta1

    [47] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015). http://smartsearch.nstl.gov.cn/paper_detail.html?id=d756923be391d295ebb8e4a4d99a5a5f

    [48] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [49] Qu C, Xiao S Y, Sun S L et al. A theoretical study on the conversion efficiencies of gradient meta-surfaces[J]. Europhysics Letters, 101, 54002(2013). http://adsabs.harvard.edu/abs/2013EL....10154002Q

    [50] Ni X J, Ishii S, Kildishev A V et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2, e72(2013).

    [51] Pors A, Nielsen M G, Eriksen R L et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 13, 829-834(2013). http://www.tandfonline.com/servlet/linkout?suffix=CIT0001&dbid=8&doi=10.1080%2F09500340.2018.1441918&key=23343380

    [52] Ding X M, Monticone F, Zhang K et al. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency[J]. Advanced Materials, 27, 1195-1200(2015).

    [53] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [54] Hao J M, Wang J, Liu X L et al. High performance optical absorber based on a plasmonic metamaterial[J]. Applied Physics Letters, 96, 251104(2010). http://scitation.aip.org/content/aip/journal/apl/96/25/10.1063/1.3442904

    [55] Liu N, Mesch M, Weiss T et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 10, 2342-2348(2010).

    [56] Aydin K, Ferry V E, Briggs R M et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nature Communications, 2, 517(2011). http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2011NatCo...2E.517A

    [57] Qu C, Ma S J, Hao J M et al. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 115, 235503(2015).

    [58] Miao Z Q, Wu Q, Li X et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J]. Physical Review X, 5, 041027(2015). http://adsabs.harvard.edu/abs/2015PhRvX...5d1027M

    Shulin Sun, Qiong He, Jiaming Hao, Shiyi Xiao, Lei Zhou. High-Efficiency Manipulations on Electromagnetic Waves with Metasurfaces[J]. Acta Optica Sinica, 2021, 41(1): 0123003
    Download Citation