• Chinese Journal of Lasers
  • Vol. 48, Issue 18, 1802011 (2021)
Zheng Lei, Zongtao Zhu*, Yuanxing Li, Yan Liu, and Hui Chen**
Author Affiliations
  • Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • show less
    DOI: 10.3788/CJL202148.1802011 Cite this Article Set citation alerts
    Zheng Lei, Zongtao Zhu, Yuanxing Li, Yan Liu, Hui Chen. Numerical Simulation of Characteristics of Laser-Hollow Tungsten Inert Gas Coaxial Composite Welding Arc[J]. Chinese Journal of Lasers, 2021, 48(18): 1802011 Copy Citation Text show less
    Schematic diagram of mathematical model of laser coaxial composite arc
    Fig. 1. Schematic diagram of mathematical model of laser coaxial composite arc
    Cloud diagram of arc temperature distribution. (a) Laser coaxial composite arc; (b) TIG arc
    Fig. 2. Cloud diagram of arc temperature distribution. (a) Laser coaxial composite arc; (b) TIG arc
    Comparison of arc temperature
    Fig. 3. Comparison of arc temperature
    Cloud diagram of plasma velocity distribution. (a) Laser coaxial composite arc; (b) TIG arc
    Fig. 4. Cloud diagram of plasma velocity distribution. (a) Laser coaxial composite arc; (b) TIG arc
    Comparison of plasma velocity
    Fig. 5. Comparison of plasma velocity
    Cloud diagram of arc pressure distribution. (a) Laser coaxial composite arc; (b) TIG arc
    Fig. 6. Cloud diagram of arc pressure distribution. (a) Laser coaxial composite arc; (b) TIG arc
    Comparison of arc pressure
    Fig. 7. Comparison of arc pressure
    Cloud diagram of arc potential distribution. (a) Laser coaxial composite arc; (b) TIG arc
    Fig. 8. Cloud diagram of arc potential distribution. (a) Laser coaxial composite arc; (b) TIG arc
    Comparison of arc potential
    Fig. 9. Comparison of arc potential
    Cloud diagram of arc magnetic field distribution. (a) Horizontal of composite arc; (b) horizontal of TIG arc; (c) vertical of composite arc; (d) vertical of TIG arc
    Fig. 10. Cloud diagram of arc magnetic field distribution. (a) Horizontal of composite arc; (b) horizontal of TIG arc; (c) vertical of composite arc; (d) vertical of TIG arc
    Comparison of magnetic field. (a) Horizontal of composite arc; (b) horizontal of TIG arc; (c) vertical of composite arc; (d) vertical of TIG arc
    Fig. 11. Comparison of magnetic field. (a) Horizontal of composite arc; (b) horizontal of TIG arc; (c) vertical of composite arc; (d) vertical of TIG arc
    Arc in experiment. (a) Laser coaxial composite arc; (b) TIG arc
    Fig. 12. Arc in experiment. (a) Laser coaxial composite arc; (b) TIG arc
    Welding joint in experiment. (a) Laser coaxial composite arc; (b) TIG arc
    Fig. 13. Welding joint in experiment. (a) Laser coaxial composite arc; (b) TIG arc
    AreaBoundary typeVelocity V /(m·s-1)Temperature T /KPotential φ/VMagnetic vector A /(Wb·m-1)
    BCWall050000A/∂z=∂A/∂r=0
    AB, CDPressure-outlet1000φ/∂z=∂φ/∂r=00
    DE, HJ, MAVelocity-inlet21000φ/∂z=∂φ/∂r=0A/∂z=∂A/∂r=0
    EF, LMWall01000φ/∂z=∂φ/∂r=0A/∂z=∂A/∂r=0
    FG, KLWall03000-σφ/∂z=I/Sc∂A/∂z=∂A/∂r=0
    GH, JKWall01000∂φ/∂z=∂φ/∂r=0∂A/∂z=∂A/∂r=0
    Table 1. Boundary condition of hollow TIG arc model
    Zheng Lei, Zongtao Zhu, Yuanxing Li, Yan Liu, Hui Chen. Numerical Simulation of Characteristics of Laser-Hollow Tungsten Inert Gas Coaxial Composite Welding Arc[J]. Chinese Journal of Lasers, 2021, 48(18): 1802011
    Download Citation