• Laser & Optoelectronics Progress
  • Vol. 61, Issue 1, 0114005 (2024)
Lingfei Ji1、2、3、*, Weigao Sun1、2、3, Zhenyuan Lin1、2、3, Bohao Zhou1、2、3, Wei Cheng1、2、3, Yanan Wen1、2、3, and Guanqiang Wang1、2、3
Author Affiliations
  • 1Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • 2Key Laboratory of Trans-Scale Laser Manufacturing Technology of Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • 3Beijing Engineering Research Center of Laser Applied Technology, Beijing 100124, China
  • show less
    DOI: 10.3788/LOP232022 Cite this Article Set citation alerts
    Lingfei Ji, Weigao Sun, Zhenyuan Lin, Bohao Zhou, Wei Cheng, Yanan Wen, Guanqiang Wang. Ultrafast Laser Technology for Fabricating Flexible Electronics: Mechanisms, Functions, and Challenges (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0114005 Copy Citation Text show less
    References

    [1] Li Z Y, Cui Y, Zhong J W. Recent advances in nanogenerators-based flexible electronics for electromechanical biomonitoring[J]. Biosensors and Bioelectronics, 186, 113290(2021).

    [2] Yin Z P, Huang Y A[M]. Flexible electronics manufacturing: materials, devices and processes(2016).

    [3] Shi Q F, Dong B W, He T Y Y et al. Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things[J]. InfoMat, 2, 1131-1162(2020).

    [4] Lü T R, Zhang W H, Yang Y Q et al. Micro/nano-fabrication of flexible poly(3, 4-ethylenedioxythiophene)-based conductive films for high-performance microdevices[J]. Small, 19, 2301071(2023).

    [5] Heikenfeld J, Jajack A, Rogers J et al. Wearable sensors: modalities, challenges, and prospects[J]. Lab on a Chip, 18, 217-248(2018).

    [6] Cai Y C, Huang W, Dong X C. Wearable and flexible electronic strain sensor[J]. Chinese Science Bulletin, 62, 635-649(2017).

    [7] Liao J N, Zhang D S, Li Z G. Advance in femtosecond laser fabrication of flexible electronics[J]. Opto-Electronic Engineering, 49, 210388(2022).

    [8] Li H Y, Zhang C J, Yang Q et al. Liquid metal based flexible electronics fabricated by laser and its applications[J]. Chinese Journal of Lasers, 49, 1002505(2022).

    [9] Rogers J A, Someya T, Huang Y G. Materials and mechanics for stretchable electronics[J]. Science, 327, 1603-1607(2010).

    [10] Pease R F, Chou S Y. Lithography and other patterning techniques for future electronics[J]. Proceedings of the IEEE, 96, 248-270(2008).

    [11] Paeng D, Yoo J H, Yeo J et al. Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation[J]. Advanced Materials, 27, 2762-2767(2015).

    [12] Bian J, Zhou L, Wan X D et al. Laser transfer, printing, and assembly techniques for flexible electronics[J]. Advanced Electronic Materials, 5, 1800900(2019).

    [13] Liu Y Q, Zhang J R, Han D D et al. Recent progress in laser-processed graphene for sensors and actuators[J]. Chinese Journal of Lasers, 48, 1502003(2021).

    [14] Shen C, Weng P X, Wang Z J et al. Research progress in laser direct writing of flexible circuit[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 51, 36-51(2021).

    [15] Joe D J, Kim S, Park J H et al. Laser-material interactions for flexible applications[J]. Advanced Materials, 29, 1606586(2017).

    [16] Kim J, Kim J H, Cho S H et al. Selective lift-off of GaN light-emitting diode from a sapphire substrate using 266-nm diode-pumped solid-state laser irradiation[J]. Applied Physics A, 122, 305(2016).

    [17] Xie X Z, Zhou C X, Wei X et al. Laser machining of transparent brittle materials: from machining strategies to applications[J]. Opto-Electronic Advances, 2, 180017(2019).

    [18] Zhang J Z, Zhang K Y, Yong J L et al. Femtosecond laser preparing patternable liquid-metal-repellent surface for flexible electronics[J]. Journal of Colloid and Interface Science, 578, 146-154(2020).

    [19] Du Y, Zhao K, Zhu Z L et al. Research and application of ultrafast laser precision manufacturing technology[J]. Laser & Infrared, 50, 1419-1425(2020).

    [20] Zhao L L, Liu Z, Chen D et al. Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage[J]. Nano-Micro Letters, 13, 49(2021).

    [21] Yang Y R, Song Y, Bo X J et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat[J]. Nature Biotechnology, 38, 217-224(2020).

    [22] Wang F C, Liu Q, Xia J W et al. Laser lift-off technologies for ultra-thin emerging electronics: mechanisms, applications, and progress[J]. Advanced Materials Technologies, 8, 2201186(2023).

    [23] McClung F J, Hellwarth R W. Giant optical pulsations from ruby[J]. Journal of Applied Physics, 33, 828-829(1962).

    [24] Fork R L, Greene B I, Shank C V. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode-locking[J]. Applied Physics Letters, 38, 671-672(1981).

    [25] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).

    [26] Guo B S, Sun J Y, Lu Y F et al. Ultrafast dynamics observation during femtosecond laser-material interaction[J]. International Journal of Extreme Manufacturing, 1, 032004(2019).

    [27] Richter S, Zimmermann F, Tünnermann A et al. Laser welding of glasses at high repetition rates-fundamentals and prospects[J]. Optics & Laser Technology, 83, 59-66(2016).

    [28] Le T S D, Phan H P, Kwon S et al. Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics[J]. Advanced Functional Materials, 32, 2205158(2022).

    [29] Lin J, Peng Z W, Liu Y Y et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 5, 5714(2014).

    [30] Trusovas R, Ratautas K, Račiukaitis G et al. Graphene layer formation in pinewood by nanosecond and picosecond laser irradiation[J]. Applied Surface Science, 471, 154-161(2019).

    [31] Le T S D, Park S, An J N et al. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics[J]. Advanced Functional Materials, 29, 1902771(2019).

    [32] Chichkov B N, Momma C, Nolte S et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 63, 109-115(1996).

    [33] Honda W, Harada S, Arie T et al. Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques[J]. Advanced Functional Materials, 24, 3299-3304(2014).

    [34] Ross R. Wood handbook: wood as an engineering material[EB/OL]. https://www.fs.usda.gov/research/treesearch/62200

    [35] Kim Y J, Le T S D, Nam H K et al. Wood-based flexible graphene thermistor with an ultra-high sensitivity enabled by ultraviolet femtosecond laser pulses[J]. CIRP Annals, 70, 443-446(2021).

    [36] Soni M, Kumar P, Pandey J et al. Scalable and site specific functionalization of reduced graphene oxide for circuit elements and flexible electronics[J]. Carbon, 128, 172-178(2018).

    [37] Chen Z D, Li J C, Xiao S L et al. Laser reduced graphene oxide for thin film flexible electronic devices[J]. Laser & Optoelectronics Progress, 57, 371-385(2020).

    [38] Li X P, Ren H R, Chen X et al. Athermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nature Communications, 6, 6984(2015).

    [39] Sharif A, Farid N, Collins A et al. Extensive reduction of graphene oxide on thin polymer substrates by ultrafast laser for robust flexible sensor applications[J]. Applied Surface Science, 613, 156067(2023).

    [40] Zhang Y L, Guo L, Wei S et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 5, 15-20(2010).

    [41] An J N, Le T S D, Lim C H J et al. Single-step selective laser writing of flexible photodetectors for wearable optoelectronics[J]. Advanced Science, 5, 1800496(2018).

    [42] Yuan Y J, Jiang L, Li X et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication[J]. Nature Communications, 11, 6185(2020).

    [43] Yuan Y J, Li X, Jiang L et al. Laser maskless fast patterning for multitype microsupercapacitors[J]. Nature Communications, 14, 3967(2023).

    [44] Yuan Y J, Jiang L, Li X et al. Ultrafast shaped laser induced synthesis of MXene quantum dots/graphene for transparent supercapacitors[J]. Advanced Materials, 34, 2110013(2022).

    [45] Tanaka T, Ishikawa A, Kawata S. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure[J]. Applied Physics Letters, 88, 081107(2006).

    [46] Lu W E, Zhang Y L, Zheng M L et al. Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction[J]. Optical Materials Express, 3, 1660-1673(2013).

    [47] Iida D, Kawai S, Ema N et al. Laser lift-off technique for freestanding GaN substrate using an in droplet formed by thermal decomposition of GaInN and its application to light-emitting diodes[J]. Applied Physics Letters, 105, 072101(2014).

    [48] Ji L F, Ma R, Zhang X M et al. Application of laser lift-off technique in flexible electronics manufacturing[J]. Chinese Journal of Lasers, 47, 0100001(2020).

    [49] Park K I, Son J H, Hwang G T et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates[J]. Advanced Materials, 26, 2514-2520(2014).

    [50] Yulianto N, Refino A D, Syring A et al. Wafer-scale transfer route for top-down III-nitride nanowire LED arrays based on the femtosecond laser lift-off technique[J]. Microsystems & Nanoengineering, 7, 32(2021).

    [51] Voronenkov V, Bochkareva N, Gorbunov R et al. Laser slicing: a thin film lift-off method for GaN-on-GaN technology[J]. Results in Physics, 13, 102233(2019).

    [52] Bornemann S, Yulianto N, Spende H et al. Femtosecond laser lift-off with sub-bandgap excitation for production of free-standing GaN light-emitting diode chips[J]. Advanced Engineering Materials, 22, 1901192(2020).

    [53] Yulianto N, Kadja G T M, Bornemann S et al. Ultrashort pulse laser lift-off processing of InGaN/GaN light-emitting diode chips[J]. ACS Applied Electronic Materials, 3, 778-788(2021).

    [54] Sun W G, Ji L F, Lin Z Y et al. Low-energy UV ultrafast laser controlled lift-off for high-quality flexible GaN-based device[J]. Advanced Functional Materials, 32, 2111920(2022).

    [55] Paula K T, Tomazio N B, Salas O I A et al. Femtosecond-laser selective printing of graphene oxide and PPV on polymeric microstructures[J]. Journal of Materials Science, 56, 11569-11577(2021).

    [56] Zhou Y, Luo G H, Hu Y X et al. Femtosecond laser printing patterned nanoparticles on flexible substrate by tuning plasmon resonances via polarization modulation[J]. International Journal of Machine Tools and Manufacture, 189, 104040(2023).

    [57] Patil J J, Chae W H, Trebach A et al. Failing forward: stability of transparent electrodes based on metal nanowire networks[J]. Advanced Materials, 33, 2004356(2021).

    [58] Abdolmaleki H, Kidmose P, Agarwala S. Droplet-based techniques for printing of functional inks for flexible physical sensors[J]. Advanced Materials, 33, 2006792(2021).

    [59] Yu Y C, Deng Y B, Al Hasan M A et al. Femtosecond laser-induced non-thermal welding for a single Cu nanowire glucose sensor[J]. Nanoscale Advances, 2, 1195-1205(2020).

    [60] Ha J, Lee B J, Hwang D J et al. Femtosecond laser nanowelding of silver nanowires for transparent conductive electrodes[J]. RSC Advances, 6, 86232-86239(2016).

    [61] Hu A M, Zhou Y X, Duley W W. Femtosecond laser-induced nanowelding: fundamentals and applications[J]. The Open Surface Science Journal, 3, 42-49(2011).

    [62] Kuppe C, Rusimova K R, Ohnoutek L et al. “Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures[J]. Advanced Optical Materials, 8, 1901166(2020).

    [63] Ren X Y, Li X, Wei F Q et al. Thermal field simulation of Ag nanoparticles induced by femtosecond laser[J]. Integrated Ferroelectrics, 208, 128-137(2020).

    [64] Lin L C, Liu L, Peng P et al. In situ nanojoining of Y- and T-shaped silver nanowires structures using femtosecond laser radiation[J]. Nanotechnology, 27, 125201(2016).

    [65] Wang L F, Ding Y, Wang G W et al. Research advances of laser-induced micro-nano joining technology[J]. Journal of Mechanical Engineering, 58, 88-99(2022).

    [66] Zou G S, Lin L S, Xiao Y et al. Ultrafast laser nano joining and its applications in the manufacturing of micro-nano devices[J]. Chinese Journal of Lasers, 48, 1502001(2021).

    [67] Xing S L, Lin L C, Zou G S et al. Two-photon absorption induced nanowelding for assembling ZnO nanowires with enhanced photoelectrical properties[J]. Applied Physics Letters, 115, 103101(2019).

    [68] Xiao M, Lin L, Xing S et al. Nanojoining and tailoring of current-voltage characteristics of metal-P type semiconductor nanowire heterojunction by femtosecond laser irradiation[J]. Journal of Applied Physics, 127, 184901(2020).

    [69] Feng J Y, Tian Y H, Wang S M et al. Femtosecond laser irradiation induced heterojunctions between carbon nanofibers and silver nanowires for a flexible strain sensor[J]. Journal of Materials Science & Technology, 84, 139-146(2021).

    [70] Zhang J, Zhu D Z, Yan J F et al. Strong metal-support interactions induced by an ultrafast laser[J]. Nature Communications, 12, 6665(2021).

    [71] Acuautla M, Bernardini S, Bendahan M et al. Ammonia sensing properties of ZnO nanoparticles on flexible substrate[J]. International Journal on Smart Sensing and Intelligent Systems, 7, 1-4(2014).

    [72] Kalita G, Qi L T, Namba Y et al. Femtosecond laser induced micropatterning of graphene film[J]. Materials Letters, 65, 1569-1572(2011).

    [73] Guo H, Yan J F, Jiang L et al. Femtosecond laser Bessel beam fabrication of a supercapacitor with a nanoscale electrode gap for high specific volumetric capacitance[J]. ACS Applied Materials & Interfaces, 14, 39220-39229(2022).

    [74] Chen G X, Yu W J, Hao Y X et al. Micron-scale resolution image sensor based on flexible organic thin film transistor arrays via femtosecond laser processing[J]. IEEE Electron Device Letters, 43, 248-251(2022).

    [75] Yin D, Feng J, Ma R et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process[J]. Nature Communications, 7, 11573(2016).

    [76] You H S, Zhang Y C, Hu Y L et al. Kirigami structures of shape memory polymer by femtosecond laser scribing and constrained heating[J]. Advanced Materials Technologies, 6, 2100200(2021).

    [77] Biswas R K, Farid N, Bhatt B B et al. Femtosecond infra-red laser carbonization and ablation of polyimide for fabrication of Kirigami inspired strain sensor[J]. Journal of Physics D: Applied Physics, 56, 085101(2023).

    [78] Du Q F, Liu L L, Tang R T et al. High-performance flexible pressure sensor based on controllable hierarchical microstructures by laser scribing for wearable electronics[J]. Advanced Materials Technologies, 6, 2100122(2021).

    [79] Su Y, Zhang W, Chen S M et al. Piezoresistive electronic-skin sensors produced with self-channeling laser microstructured silicon molds[J]. IEEE Transactions on Electron Devices, 68, 786-792(2021).

    [80] Lin Z Y, Liu H G, Ji L F et al. Realization of ∼10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air[J]. Nano Letters, 20, 4947-4952(2020).

    [81] Jin F, Liu J, Zhao Y Y et al. λ/30 inorganic features achieved by multi-photon 3D lithography[J]. Nature Communications, 13, 1357(2022).

    [82] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [83] Lin Z Y, Liu K, Cao T et al. Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption[J]. Opto-Electronic Advances, 6, 230029(2023).

    [84] Li Z Z, Wang L, Fan H et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment[J]. Light: Science & Applications, 9, 41(2020).

    [85] Liu Y H, Zhao Y Y, Jin F et al. λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning[J]. Nano Letters, 21, 3915-3921(2021).

    Lingfei Ji, Weigao Sun, Zhenyuan Lin, Bohao Zhou, Wei Cheng, Yanan Wen, Guanqiang Wang. Ultrafast Laser Technology for Fabricating Flexible Electronics: Mechanisms, Functions, and Challenges (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0114005
    Download Citation