• High Power Laser Science and Engineering
  • Vol. 9, Issue 2, 02000e11 (2021)
Jörg Körner1、2、3、*, Venkatesan Jambunathan1, Fangxin Yue1, Jürgen Reiter2、3, Ondřej Slezák1, Petr Navrátil1, Samuel Paul David1, Antonio Lucianetti1, Joachim Hein2、3, Tomáš Mocek1, and Malte C. Kaluza2、3
Author Affiliations
  • 1HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, Dolní Břežany, Czech Republic
  • 2Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Jena, Germany
  • 3Helmholz Institute Jena, Jena, Germany
  • show less
    DOI: 10.1017/hpl.2020.53 Cite this Article Set citation alerts
    Jörg Körner, Venkatesan Jambunathan, Fangxin Yue, Jürgen Reiter, Ondřej Slezák, Petr Navrátil, Samuel Paul David, Antonio Lucianetti, Joachim Hein, Tomáš Mocek, Malte C. Kaluza. Diode-pumped, electro-optically Q-switched, cryogenic Tm:YAG laser operating at 1.88 μm[J]. High Power Laser Science and Engineering, 2021, 9(2): 02000e11 Copy Citation Text show less

    Abstract

    We present a diode-pumped, electro-optically Q-switched Tm:YAG laser with a cryogenically cooled laser crystal at 120 K. Output pulses of up to 2.55 mJ and 650 ns duration were demonstrated in an actively Q-switched configuration with a repetition rate of 1 Hz. By using cavity dumping the pulse duration was shortened to 18 ns with only a slightly lower output energy of 2.22 mJ. Furthermore, using a simplified rate equation model, we discuss design constraints on the pump fluence in a pulse pump approach for Tm:YAG to maximize the energy storage capability at a given pump power.
    $$\begin{align}\frac{\mathrm{d}{N}_1}{\mathrm{d}t}&=-{\sigma}_{\mathrm{a}}c{\varPhi}_{\mathrm{p}}\cdot \left({f}_1{N}_1-{f}_2{N}_2\right)+\frac{N_2}{\tau_{21}}+\frac{N_3}{\tau_{31}}-\frac{N_2}{\tau_{23}},\end{align}$$((1))

    View in Article

    $$\begin{align}\frac{\mathrm{d}{N}_2}{\mathrm{d}t}&={\sigma}_{\mathrm{a}}c{\varPhi}_{\mathrm{p}}\cdot \left({f}_1{N}_1-{f}_2{N}_2\right)-\frac{N_2}{\tau_{21}}-\frac{N_2}{\tau_{23}},\end{align}$$((2))

    View in Article

    $$\begin{align}\frac{\mathrm{d}{N}_3}{\mathrm{d}t}&=2\cdot \frac{N_2}{\tau_{23}}-\frac{N_3}{\tau_{31}}.\end{align}$$((3))

    View in Article

    $$\begin{align}\frac{N_2}{\tau_{23}}={\sigma}_{\mathrm{a}}c{\varPhi}_{\mathrm{p}}\cdot {f}_1{N}_1.\end{align}$$((4))

    View in Article

    $$\begin{align}\frac{\mathrm{d}{N}_1}{\mathrm{d}t}&=-2{\sigma}_{\mathrm{a}}c{\varPhi}_{\mathrm{p}}\cdot {f}_1{N}_1+\frac{N_3}{\tau_{31}},\end{align}$$((5))

    View in Article

    $$\begin{align}\frac{\mathrm{d}{N}_3}{\mathrm{d}t}&=2{\sigma}_{\mathrm{a}}c{\varPhi}_{\mathrm{p}}\cdot {f}_1{N}_1-\frac{N_3}{\tau_{31}}.\end{align}$$((6))

    View in Article

    $$\begin{align}\frac{\partial \beta }{\partial t}=2{Rf}_1-\beta \cdot \left(2{Rf}_1+\frac{1}{\tau_{31}}\right).\end{align}$$((7))

    View in Article

    $$\begin{align}\frac{\partial R}{\partial z}=-R(z){\sigma}_{\mathrm{a}}{f}_1{N}_{\mathrm{dop}}\cdot \left(1-\beta\right).\end{align}$$((8))

    View in Article

    Jörg Körner, Venkatesan Jambunathan, Fangxin Yue, Jürgen Reiter, Ondřej Slezák, Petr Navrátil, Samuel Paul David, Antonio Lucianetti, Joachim Hein, Tomáš Mocek, Malte C. Kaluza. Diode-pumped, electro-optically Q-switched, cryogenic Tm:YAG laser operating at 1.88 μm[J]. High Power Laser Science and Engineering, 2021, 9(2): 02000e11
    Download Citation