• Laser & Optoelectronics Progress
  • Vol. 53, Issue 8, 80007 (2016)
Cheng Hongtao1、*, Guo Shijun1, Lü Jie1, and Li Hengyu2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop53.080007 Cite this Article Set citation alerts
    Cheng Hongtao, Guo Shijun, Lü Jie, Li Hengyu. Research Development Trends of Zoom System with Variable Focal Power Device[J]. Laser & Optoelectronics Progress, 2016, 53(8): 80007 Copy Citation Text show less
    References

    [1] Jabbour J M, Malik B H, Olsovsky C, et al. Optical axial scanning in confocal microscopy using an electrically tunable lens[J]. Biomedical Optics Express, 2014, 5(2): 645-652.

    [2] Ozbay B N, Losacco J T, Cormack R, et al. Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts[J]. Optics Letters, 2015, 40(11): 2553-2556.

    [3] Nakai Y, Ozeki M, Hiraiwa T, et al. High-speed microscopy with an electrically tunable lens to image the dynamics of in vivo molecular complexes[J]. Review of Scientific Instruments, 2015, 86(1): 013707.

    [4] Zou Y, Zhang W, Chau F S, et al. Miniature adjustable-focus endoscope with a solid electrically tunable lens[J]. Optics Express, 2015, 23(16): 20582-20592.

    [5] Fahrbach F O, Voigt F F, Schmid B, et al. Rapid 3D light-sheet microscopy with a tunable lens[J]. Optics Express, 2013, 21(18): 21010-21026.

    [6] Chen J L, Pfffli O A, Voigt F F, et al. Online correction of licking-induced brain motion during two-photon imaging with a tunable lens[J]. The Journal of Physiology, 2013, 591(19): 4689-4698.

    [7] Smeesters L, Belay G Y, Ottevaere H, et al. Two-channel multiresolution refocusing imaging system using a tunable liquid lens[J]. Applied Optics, 2014, 53(18): 4002-4010.

    [8] Bayanna A R, Louis R E, Chatterjee S, et al. Membrane-based deformable mirror: intrinsic aberrations and alignment issues[J]. Applied Optics, 2015, 54(7): 1727-1736.

    [9] Brousseau D, Borra E F, Thibault S. Wavefront correction with a 37-actuator ferrofluid deformable mirror[J]. Optics Express, 2007, 15(26): 18190-18199.

    [10] Liu W, Dong L, Yang P, et al. Zonal decoupling algorithm for dual deformable mirror adaptive optics system[J]. Chinese Optics Letters, 2016, 14(2): 020101.

    [11] Klimas P, Rowlands N, Hickson P, et al. Lunar liquid mirror telescope: structural concepts[C]. SPIE, 2010, 7732: 77322U.

    [12] Detsis E, Doule O, Ebrahimi A. Location selection and layout for LB10, a lunar base at thelunar north pole with a liquid mirror observatory[J]. Acta Astronautica, 2013, 85: 61-72.

    [13] Bitenc U, Bharmal N A, Morris T J, et al. Assessing the stability of an ALPAO deformable mirror for feed-forward operation[J]. Optics Express, 2014, 22(10): 12438-12451.

    [14] Madec P Y. Overview ofdeformable mirror technologies for adaptive optics[C]. Arlington: Adaptive Optics: Analysis, Methods & Systems, 2015: AOTh2C.1.

    [15] Kuiper S, Hendriks B H W. Variable-focus liquid lens for miniature cameras[J]. Applied physicsLetters, 2004, 85(7): 1128.

    [16] Binh K N, Matsumoto K, Shimoyama I. Polymer thin film deposited on liquid for varifocal encapsulated liquid lenses[J]. Applied Physics Letters, 2008, 93(12): 124101.

    [17] Ren H, Wu S T. Variable-focus liquid lens[J]. Optics Express, 2007, 15(10): 5931-5936.

    [18] Oh S H, Rhee K, Chung S K. Electromagnetically driven liquid lens[J]. Sensors and Actuators A: Physical, 2016, 240: 153-159.

    [19] López C A, Hirsa A H. Fast focusing using a pinned-contact oscillating liquid lens[J]. Nature Photonics, 2008, 2(10): 610-613.

    [20] Hornbeck L J. Multi-level deformable mirror device: US5600383 A[P]. 1992-01-28.

    [21] Mishra K, Murade C, Carreel B, et al. Optofluidic lens with tunable focal length and asphericity[J]. Scientific Reports, 2014, 4: 6378.

    [22] Fernández E J, Artal P. Membrane deformable mirror for adaptive optics: performance limits in visual optics[J]. Optics Express, 2003, 11(9): 1056-1069.

    [23] Squires T M, Quake S R. Microfluidics: Fluid physics at the nanoliter scale[J]. Reviews of Modern Physics, 2005, 77(3): 977-1026.

    [24] Wei K, Domicone N W, Zhao Y. Electroactive liquid lens driven by an annular membrane[J]. Optics Letters, 2014, 39(5): 1318-1321.

    [25] Yuan Xucang. Optical design[M]. Beijing: Science Press, 1983.

    [26] Cheng Hongtao. Design of three-mirror non-coaxial zoom objective based on deformable mirrors[J]. Acta Optica Sinica, 2013, 33(12): 1222002.

    [27] Tao C K. Design of zoom system by the varifocal differential equation[J]. Applied Optics, 1992, 31(13): 2265-2273.

    [28] Zhai Tingting, Zhu Jianqiang. New method for first-order structure design of continuous zoom lens system[J]. Acta Optica Sinica, 2015, 35(7): 0722002.

    [29] Huang Hao, Li Xiangning, Song Qiang. New method for all movable zoom lens first order design[J]. Acta Optica Sinica, 2015, 35(s1): s122004.

    [30] Yamaji K. Design of zoom lenses[J]. Progress in Optics, 1967, 6: 105-170.

    [31] Clark A D. Zoom lenses[M]. Bristol: A Hilger, 1973.

    [32] Yan Jing, Liu Ying, Sun Quan, et al. Design of 10×MWIR continuous zoom optical system[J]. Laser & Optoelectronics Progress, 2014, 51(1): 012201.

    [33] Matter G H, Luszcz E T. A family of optically compensated zoom lenses[J]. Applied Optics, 1970, 9(4): 844-848.

    [34] Mik A, Novák J, Novák P. Method of zoom lens design[J]. Applied Optics, 2008, 47(32): 6088-6098.

    [35] Jamieson T H. Thin-lens theory of zoom systems[J]. Optica Acta, 1970, 17(8): 565-584.

    [36] Henry C H, Logan R A, Bertness K A. Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers[J]. Journal of Applied Physics, 1981, 52(7): 4457-4461.

    [37] Miks A, Novak J, Novak P. Generalized refractive tunable-focus lens and its imaging characteristics[J]. Optics Express, 2010, 18(9): 9034-9047.

    [38] Lancry M, Poumellec B, Chahid-Erraji A, et al. Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses[J]. Optical Materials Express, 2011, 1(4): 711-723.

    [39] Bulutay C, Turgut C M, Zakhleniuk N A. Carrier-induced refractive index change and optical absorption in wurtzite InN and GaN: Full-band approach[J]. Physical Review B, 2010, 81(15): 155206.

    [40] Zhang Wei, Zhang Hongjian, Tian Weijian. Design of mechanically-actuated variable focus liquid lens[J]. Journal of Applied Optics, 2008, 29(supp): 59-63.

    [41] Chowdhury F A, Chau K J. Variable focus microscopy using a suspended water droplet[J]. Journal of Optics, 2012, 14(5): 055501.

    [42] Peng R, Chen J, Zhuang S. Electrowetting-actuated zoom lens with spherical-interface liquid lenses[J]. JOSA A, 2008, 25(11): 2644-2650.

    [43] Hendriks B H W, Kuiper S, Marco A J van As, et al. Electrowetting-based variable-focus lens for miniature systems[J]. Optical Review, 2005, 12(3): 255-259.

    [44] Ren H, Fox D, Anderson P A, et al. Tunable-focus liquid lens controlled using a servo motor[J]. Optics Express, 2006, 14(18): 8031-8036.

    [45] Mugele F, Baret J C. Electrowetting: from basics to applications[J]. Journal of Physics: Condensed Matter, 2005, 17(28): R705-R774.

    [46] Washizu M. Electrostatic actuation of liquid droplets for micro-reactor applications[J]. IEEE Transactions on Industry Applications, 1998, 34(4): 732-737.

    [47] Krupenkin T N, Taylor J A, Schneider T M, et al. From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces[J]. Langmuir, 2004, 20: 3824-3827.

    [48] Duncan G R. Liquid lenses make a splash[J]. Nature Photonics, 2006: 2-4.

    [49] Kuiper S, Hendriks B H, Huijbregts L J, et al. Variable-focus liquid lens for portable applications[C]. SPIE, 2004, 5523: 100-109.

    [50] Hendriks B, Kuiper S. Through a lens sharply[J]. IEEE Spectrum, 2004, 41(12): 32-36.

    [51] Kuiper S, Hendriks B. Wet and wild[J]. Optoelectronics & Communications, 2005, 5(1): 20-23.

    [52] Kuiper S, Hendriks B, Benno Hendriks. Voltage reduction in electrowetting-ondielectric[C]. Edmonton: Proceedings of ESA Annual Meeting, 2005: 28-36.

    [53] S Kuiper, B H W Hendriks, R A Hayes, et al. Electrowetting-based optics[C]. SPIE, 2005, 5908: 59080R.

    [54] Krogmann F, Mnch W, Zappe H. Electrowetting for tunable microoptics[J]. Journal of Microelectromechanical Systems, 2008, 17(6): 1501-1512.

    [55] Hendriks B H W, Kuiper S, van As M A J, et al. Variable liquid lenses for electronic products[C]. SPIE, 2006, 6034: 603402.

    [56] Super-thin mirror for sharper star images[EB/OL]. [2016-5-5]. https://www.eso.org/public/announcements/ann12015/.

    [57] Borra E F, Seddiki O, Angel R, et al. Deposition of metal films on an ionic liquid as a basis for a lunar telescope[J]. Nature, 2007, 447(7147): 979-981.

    [58] Zhou Hong, Ning Yu, Guan Chunlin, et al. Design and fabrication of prototype for bimorph deformable mirrors[J]. Acta Optica Sinica, 2009, 29(6): 1437-1442.

    [59] Zhou Hong, Guan Chunlin, Dai Yun. Bimorph deformable mirrors for adaptive optics of human retinal imaging system[J]. Acta Optica Sinica, 2013, 33(2): 0211001.

    [60] Wang Z, Xu Y, Zhao Y. Aberration analyses for liquid zooming lenses without moving parts[J]. Optics Communications, 2007, 275(1): 22-26.

    [61] Zhang D Y, Justis N, Lo Y H. Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view[J]. Optics Communications, 2005, 249(1-3): 175-182.

    [62] Miks A, Novak J. Analysis of two-element zoom systems based on variable power lenses[J]. Optics Express, 2010, 18(7): 6797-6810.

    [63] Miks A, Novak J. Analysis of three-element zoom lens based on refractive variable-focus lenses[J]. Optics Express, 2011, 19(24): 23989-23996.

    [64] Miks A, Novak J. Third-order aberrations of the thin refractive tunable-focus lens[J]. Optics Letters, 2010, 35(7): 1031-1033.

    [66] Zhang Ying. Research on zoom lens design with liquid lenses[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2012.

    [67] Zhang Wei. Study on liquid lens technology and its applications in micro zoom optical system[D]. Xi′an: Xi′an Institute of Optics and Fine Mechanics of Chinese Academy of Sciences, 2009.

    [68] Hao Q, Cheng X, Du K. Four-group stabilized zoom lens design of two focal-length-variable elements[J]. Optics Express, 2013, 21(6): 7758-7767.

    [69] Reichelt S, Zappe H. Design of spherically corrected, achromatic variable-focus liquid lenses[J]. Optics Express, 2007, 15(21): 14146-14154.

    [70] Li L, Wang Q H. Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target[J]. Optical Engineering, 2012, 51(4): 043001.

    [71] Jungwirth M E L, Wick D V, Dereniak E L. Theory and design of a MEMS-enabled diffraction limited adaptive optical zoom system[C]. SPIE, 2012, 8373: 83730T.

    [72] Miks A, Novak J, Novak P. Chromatic aberrations of thin refractive variable-focus lens[J]. Optics Communications, 2012, 285(10-11): 2506-2509.

    [73] Miks A, Novak J. Three-component double conjugate zoom lens system from tunable focus lenses[J]. Applied Optics, 2013, 52(4): 862-865.

    [74] Hao Q, Cheng X, Du K. Four-group stabilized zoom lens design of two focal-length-variable elements[J]. Optics Express, 2013, 21(6): 7758-7767.

    CLP Journals

    [1] Xu Ke, Li Hua, Mao Tingxue. Mechanism of Focus-Variable Liquid Lens Driven by Bending Vibration of Thin Films[J]. Laser & Optoelectronics Progress, 2018, 55(9): 92202

    Cheng Hongtao, Guo Shijun, Lü Jie, Li Hengyu. Research Development Trends of Zoom System with Variable Focal Power Device[J]. Laser & Optoelectronics Progress, 2016, 53(8): 80007
    Download Citation