• Laser & Optoelectronics Progress
  • Vol. 55, Issue 1, 11403 (2018)
Li Junfeng, Wei Zhengying*, and Lu Bingheng
Author Affiliations
  • State Key Laboratory for Manufacturing Systems Engineering, Xi''an Jiaotong University, Shaanxi, Xi''an 710049, China
  • show less
    DOI: 10.3788/LOP55.011403 Cite this Article Set citation alerts
    Li Junfeng, Wei Zhengying, Lu Bingheng. Research Progress on Technology of Selective Laser Melting of Titanium and Titanium Alloys[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11403 Copy Citation Text show less
    References

    [1] Leyens C, Peters M. Titanium and titanium alloys:Fundamentals and applications[M]. New York: John Wiley & Sons, 3(2003).

    [2] Fu Y Y, Song Y Q, Hui S X et al. Progress in research and application of titanium alloys used in aeronautical field[J]. Chinese Journal of Rare Metals, 30, 850-856(2006).

    [3] Li L Q, Wang J D, Wu C C et al. Temperature field of molten pool and microstructure property in laser melting depositions of Ti6Al4V[J]. Chinese Journal of Lasers, 44, 0302009(2017).

    [4] Wang X, Zhou J Z, Huang S et al. Effect of laser peening on hydrogen embrittlement resistance of TC4 titanium alloys[J]. Acta Optica Sinica, 37, 0914006(2017).

    [5] Zhao Y Q, Chen Y N, Zhang X M et al[M]. Phase transformation and heat treatment of titanium alloys(2012).

    [6] Zhu Z S. Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials, 34, 44-50(2014).

    [7] Li F C, Song Z M, Yang D J. Research on titanium alloy machining technology[J]. New Technology & New Process, 5, 66-69(2010).

    [8] Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 433, 66-71(2013).

    [9] Wang H M. High-performance metal component manufacturing technology opens a new chapter in national defense[J]. Defense Manufacturing Technology, 3, 5-7(2013).

    [10] Deng X H, Yang Z J. Current situation and prospect of titanium alloy additive manufacturing technology[J]. Development and Application of Materials, 29, 113-120(2014).

    [11] Li J, Lin X, Qian Y H et al. Study on microstructure and property of laser solid forming TC4 titanium alloy[J]. Chinese Journal of Lasers, 41, 1103010(2014).

    [12] Li H X, Gong S L, Sun F et al. Development and application of laser additive manufacturing for metal component[J]. Aeronautical Manufacturing Technology, 416, 26-31(2012).

    [13] Pan A Q, Zhang H, Wang Z M. Molten pool microstructure of Ni-based single crystal superalloys fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 54, 041702(2017).

    [14] Hou H P, Liang Y C, He Y L et al. Microstructure evolution and tensile property of Hastelloy-X alloys produced by selective laser melting[J]. Chinese Journal of Lasers, 44, 0202007(2017).

    [15] Yang Q Z, Wei Y P, Gao P et al[J]. Research progress of metal additive manufacturing technologies and related materials Materials Review, 2016, 107-111.

    [16] Edwards P. O'Conner A, Ramulu M. Electron beam additive manufacturing of titanium components:Properties and performance[J]. Journal of Manufacturing Science and Engineering, 135, 061016(2013). http://www.researchgate.net/publication/259716135_Electron_Beam_Additive_Manufacturing_of_Titanium_Components_Properties_and_Performance

    [17] Baufeld B, van der Biest O, Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition:Microstructure and mechanical properties[J]. Materials & Design, 31, S106-S111(2010). http://www.sciencedirect.com/science/article/pii/S0261306909006529

    [18] Wang X, Wang D S, Gao X S et al. Research status and development in laser additive manufacturing of light alloy components[J]. Applied Laser, 36, 478-483(2016).

    [19] Wang H M, Zhang S Q, Tang H B et al. Development of laser rapid prototyping technology for large titanium alloy structures[J]. Aviation Precision Manufacturing Technology, 44, 28-30(2008).

    [20] Feng Y F. Northwestern polytechnical university made 3 meters titanium alloy parts of C919 aircraft with 3D printing[J]. Technology Research, 1, 24(2013).

    [21] Dong P, Li Z H, Yan Z Y et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 5, 607-611(2015).

    [22] Dong P, Chen J L. Current status of selective laser melting for aerospace applications abroad[J]. Aeronautical Manufacturing Technology, 1, 1-5(2014).

    [23] Yang Y Q, Wu W H, Lai K X et al. Newest process of direct rapid prototyping of metal part by selective laser melting[J]. Aeronautical Manufacturing Technology, 2, 73-76(2006).

    [24] Yin H, Bai P K, Liu B et al. Present situation and development trend of selective laser melting technology for metal powder[J]. Hot Working Technology, 39, 140-144(2010).

    [25] Gu D D, Shen Y F. Research status and technical prospect of rapid manufacturing of metallic part by selective laser melting[J]. Aeronautical Manufacturing Technology, 8, 32-37(2012).

    [26] Dang X A, Zhang X B, Yang L J et al. Researching forming property of titanium powder in selective laser melting[J]. Journal of Shaanxi University Science & Technology, 1, 68-73(2014).

    [27] Abe F, Santos E C, Kitamura Y et al. Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process[J]. Journal of Mechanical Engineering Science, 217, 119-126(2003). http://www.researchgate.net/publication/245387639_Influence_of_forming_conditions_on_the_titanium_model_in_rapid_prototyping_with_the_selective_laser_melting_process

    [28] Gu D, Hagedorn Y C, Meiners W et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 60, 3849-3860(2012). http://www.sciencedirect.com/science/article/pii/S1359645412002522

    [29] Attar H, Calin M, Zhang L C et al. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium[J]. Materials Science and Engineering, 593, 170-177(2014). http://www.sciencedirect.com/science/article/pii/S0921509313012665

    [30] Li X P, Humbeeck J V, Kruth J P. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: A study from laser power perspective[J]. Mater& Design, 116, 352-358(2017). http://www.sciencedirect.com/science/article/pii/S0264127516315349

    [31] Kang N, Yuan H, Coddet P et al. On the texture, phase and tensile properties of commercially pure Ti produced via selective laser melting assisted by static magnetic field[J]. Mater Science and Engineering, 70, 405-407(2017). http://europepmc.org/abstract/MED/27770909

    [32] Barbas A, Bonnet A S, Lipinski P et al. Development and mechanical characterization of porous titanium bone substitutes[J]. Journal of the Mechanical Behavior of Biomedical Materials, 9, 34(2012). http://www.sciencedirect.com/science/article/pii/S1751616112000288

    [33] Liang Y R, Wu Y J. Production technology of titanium and its alloy spherical powders used in 3D printing[J]. World Nonferrous Metals, 12, 150-151(2016).

    [34] Seyda V, Herzog D, Emmelmann C. Relationship between powder characteristics and part properties in laser beam melting of Ti-6Al-4V, and implications on quality[J]. Journal of Laser Applications, 29, 022311(2017). http://www.researchgate.net/publication/318077384_Relationship_between_powder_characteristics_and_part_properties_in_laser_beam_melting_of_Ti-6Al-4V_and_implications_on_quality

    [35] Yao N N, Peng X H. The preparation method of metal powder for 3D printing[J]. Sichuan Nonferrous Metals, 4, 48-51(2013).

    [36] Zhao X H, Zuo Z B, Han Z Y et al. A review on powder titanium alloy 3D printing technology[J]. Materials Review, 30, 120-126(2016).

    [37] Yao W J. Iluka additional investment in the low-cost development of titanium metal powders[J]. China Titanium Industry, 2, 50(2016).

    [38] Gong H, Gu H, Zeng K et al. Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder[C]. Solid Freeform Fabrication Symposium, 256-267(2014).

    [39] Gong HJ, RafiK, Gu HF, et al. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J]. Additive Manufacturing, 2014, 1/2/3/4: 87- 98.

    [40] Sun J F, Yang Y Q, Yang Z. Study on surface roughness of selective laser melting Ti6Al4V based on powder characteristics[J]. Chinese Journal of Lasers, 43, 0702004(2016).

    [41] Sato Y, Tsukamoto M, Yamashita Y. Surface morphology of Ti-6Al-4V plate fabricated by vacuum selective laser melting[J]. Applied Physics B, 119, 545-549(2015). http://link.springer.com/article/10.1007/s00340-015-6059-3

    [42] Simonelli M, Tuck C, Aboulkhair N T et al. A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V[J]. Metallurgical & Materials Transactions A, 46, 3842-3851(2015). http://link.springer.com/article/10.1007/s11661-015-2882-8

    [43] Sato Y, Tsukamoto M, Yamashita Y. et al. Effect on beam profile of Ti alloy plate fabrication from powder by sputter-less selective laser melting[C]. SPIE, 10095, 100950Z(2017).

    [44] Kasperovich G, Haubrich J, Gussone J et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting[J]. Materials & Design, 105, 160-170(2016). http://www.sciencedirect.com/science/article/pii/S0264127516306761

    [45] Song B, Dong S J, Liao H L et al. Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering[J]. The International Journal of Advanced Manufacturing Technology, 61, 967-974(2012). http://link.springer.com/article/10.1007/s00170-011-3776-6

    [46] Sun J F, Yang Y Q, Wang D. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method[J]. Optics & Laser Technology, 49, 118-124(2013). http://www.sciencedirect.com/science/article/pii/S0030399212005531

    [47] Ye Z H. The personalized design and process research of selective laser melting manufacturing of Ti6Al4V tibial implant[D]. Guangzhou: South China University of Technology(2014).

    [48] Wang X L. Study on process optimization and property of titanium alloy manufactured by selective laser melting[D]. Guangzhou: South China University of Technology(2016).

    [49] Wang J H, Bai P K. Study on process parameters on surface quality of Ti6Al4V by selective laser melting[J]. Hot Working Technology, 42, 13-15(2013).

    [50] Zhang S. Research on the forming processes and properties in selective laser melting of medical alloy powders[D]. Wuhan: Huang Zhong University of Science and Technology(2014).

    [51] Shi X, Ma S, Liu C et al. Performance of high layer thickness in selective laser melting of Ti6Al4V[J]. Materials, 9, 975(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC5456986/

    [52] Simonelli M, Tse Y Y, Tuck C. Microstructure of Ti-6Al-4V produced by selective laser melting[J]. Journal of Physics, 371, 012084(2012). http://www.researchgate.net/publication/254496122_Microstructure_of_Ti6Al4V_produced_by_selective_laser_melting?_sg=EspBOA5r3w4ukHoSsdcoHX9wRToktBvUjORREa7cMwMlmLBBLFqKIc7o2V2Zb26WFJubCMSdDbux7MrBCzktng

    [53] Thijs L, Verhaeghe F, Craeghs T et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Mater, 58, 3303-3312(2010). http://www.sciencedirect.com/science/article/pii/S135964541000090X

    [54] Do D K, Li P F. The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting[J]. Virtual and Physical Prototyping, 11, 41-47(2016). http://www.tandfonline.com/doi/abs/10.1080/17452759.2016.1142215

    [55] Yang J J, Yu H C, Yin J et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting[J]. Materials & Design, 108, 308-318(2016). http://www.sciencedirect.com/science/article/pii/S0264127516308796

    [56] Simonelli M, Tse Y Y, Tuck C. Further understanding of Ti-6Al-4V selective laser melting using texture analysis. [C]// Proceedings of 23rd Annual International Solid Freeform Fabrication Symposium, 480-491(2012).

    [57] Han J, Yang J J, Yu H C et al. Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density[J]. Rapid Prototyping Journal, 23, 217-226(2017). http://www.researchgate.net/publication/316530833_Microstructure_and_mechanical_property_of_selective_laser_melted_Ti6Al4V_dependence_on_laser_energy_density

    [58] Dutta B. Froes F H S. The additive manufacturing (AM) of titanium alloys[J]. Metal Powder Report, 72, 96-106(2017). http://www.sciencedirect.com/science/article/pii/S0026065716305045

    [59] Simonelli M, Tse Y Y, Tuck C. On the texture formation of selective laser melted Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 45, 2863-2872(2014). http://link.springer.com/article/10.1007/s11661-014-2218-0

    [60] Barriobero V P, Gussone J, Haubrich J et al. Inducing stable α+β microstructures during selective laser melting of Ti-6Al-4V using intensified intrinsic heat treatments[J]. Materials, 10, 268(2017). http://europepmc.org/abstract/MED/28772630

    [61] Facchini L, Magalini E, Robotti P et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders[J]. Rapid Prototyping Journal, 16, 450-459(2010). http://www.emeraldinsight.com/doi/full/10.1108/13552541011083371

    [62] Ali H, Ma L, Ghadbeigi H et al. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of selective laser melted Ti6Al4V[J]. Materials Science & Engineering, 695, 211-220(2017). http://www.sciencedirect.com/science/article/pii/S0921509317304768

    [63] Xu W, Lui E W, Pateras A et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance[J]. Acta Mater, 125, 390-400(2017). http://www.sciencedirect.com/science/article/pii/S1359645416309636

    [64] Xu W, Sun S, Elambasseril J et al. Ti-6Al-4V additively manufactured by selective laser melting with superior mechanical properties[J]. JOM, 67, 668-673(2015). http://link.springer.com/article/10.1007/s11837-015-1297-8

    [65] Vrancken B, Thijs L, Kruth J P et al. Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 541, 177-185(2012). http://www.sciencedirect.com/science/article/pii/S0925838812011826

    [66] Khorasani A, Gibson I, Goldberg M et al. On the role of different annealing heat treatments on mechanical properties and microstructure of selective laser melted and conventional wrought Ti-6Al-4V[J]. Rapid Prototyping Journal, 23, 295-304(2017). http://www.researchgate.net/publication/310461304_On_The_Role_of_Different_Annealing_Heat_Treatments_on_Mechanical_Properties_and_Microstructure_of_Selective_Laser_Melted_and_Conventional_Wrought_Ti-6Al-4V

    [67] Kasperovich G, Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting[J]. Journal of Materials Processing Technology, 220, 202-214(2015). http://www.sciencedirect.com/science/article/pii/S0924013615000278

    [68] Liang X K, Dong P, Chen J L et al. Microstructure and mechanical properties of selective laser melting Ti6Al4V alloy[J]. Applied Laser, 34, 101-104(2014).

    [69] Cain V, Thijs L, Humbeeck J V et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting[J]. Additive Manufacturing, 5, 68-76(2015). http://www.sciencedirect.com/science/article/pii/S221486041400030X

    [70] Benedetti M, Torresani E, Leoni M et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 71, 295(2017). http://www.ncbi.nlm.nih.gov/pubmed/28376363

    [71] Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V[J]. Materials Science & Engineering, 616, 1-11(2014). http://www.sciencedirect.com/science/article/pii/S0921509314009538

    [72] Zhang K, Liu T T, Zhang C D et al. Study on deformation behavior in selective laser melting based on the analysis of the melt pool data[J]. Chinese Journal of Lasers, 42, 0903007(2015).

    [73] Casavola C, Campanelli S L, Pappalettere C. Preliminary investigation on distribution of residual stress generated by the selective laser melting process[J]. The Journal of Strain Analysis for Engineering Design, 44, 93-104(2009). http://www.researchgate.net/publication/245394852_Preliminary_investigation_on_distribution_of_residual_stress_generated_by_the_selective_laser_melting_process

    [74] Liu Y, Yang Y, Wang D. A study on the residual stress during selective laser melting (SLM) of metallic powder[J]. The International Journal of Advanced Manufacturing Technology, 87, 647-656(2016). http://link.springer.com/10.1007/s00170-016-8466-y

    [75] Megahed M, Mindt H W. N’Dri N, et al. Metal additive-manufacturing process and residual stress modeling[J]. Integrating Materials & Manufacturing Innovation, 5, 4(2016). http://link.springer.com/article/10.1186/s40192-016-0047-2

    [76] Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 12, 254-265(2013). http://www.emeraldinsight.com/doi/full/10.1108/13552540610707013

    [77] Vrancken B, Cain V, Knutsen R. et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scripta Materialia, 87, 29-32(2014). http://www.sciencedirect.com/science/article/pii/S1359646214002164

    [78] Yadroitsev I, Yadroitsava I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting[J]. Virtual & Physical Prototyping, 10, 1-10(2015). http://www.tandfonline.com/doi/abs/10.1080/17452759.2015.1026045

    [79] Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 12, 1-15(2016). http://www.sciencedirect.com/science/article/pii/S2214860416300987

    [80] Mohanty S, Hattel J H. Reducing residual stresses and deformations in selective laser melting through multilevel multiscale optimization of cellular scanning strategy[C]. SPIE, 9738, 97380Z(2016).

    [81] Deng S S, Yang Y Q, Li Y et al. Planning of area-partition scanning path and its effect on residual stress of SLM molding parts[J]. Chinese Journal of Lasers, 43, 1202003(2016).

    [82] Zhang S, Gui R Z, Wei Q S et al. Cracking behavior and formation mechanism of TC4 alloy fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 49, 21-27(2013).

    [83] Mishurova T, Cabeza S, Artzt K et al. An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V[J]. Materials, 10, 348(2017). http://europepmc.org/abstract/MED/28772706

    [84] Vastola G, Zhang G, Pei Q X et al. Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling[J]. Additive Manufacturing, 12, 231-239(2016). http://www.sciencedirect.com/science/article/pii/S2214860416300951

    [85] Rotaru H, Armencea G, Spirchez D et al. In vivo behavior of surface modified Ti6Al7Nb alloys used in selective laser melting for custom-made implants. A preliminary study[J]. Romanian Journal of Morphology Embryology, 54, 791-796(2013). http://www.ncbi.nlm.nih.gov/pubmed/24322029

    [86] Łyczkowska E, Szymczyk P, Dybała B et al. Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing[J]. Archives of Civil and Mechanical Engineering, 14, 586-594(2014). http://www.sciencedirect.com/science/article/pii/S164496651400048X

    [87] Marcu T, Todea M, Gligor I et al. Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications[J]. Applied Surface Science, 258, 3276-3282(2012). http://www.sciencedirect.com/science/article/pii/S0169433211018393

    [88] Marcu T, Menapace C, Girardini L. et al. Selective laser melting of Ti6Al7Nb with hydroxyapatite addition[J]. Rapid Prototyping Journal, 20, 301-310(2014). http://www.emeraldinsight.com/doi/full/10.1108/RPJ-09-2012-0083

    [89] Chlebus E. Ku nicka B, Kurzynowski T, et al. Microstructure and mechanical behavior of Ti-6Al-7Nb alloy produced by selective laser melting[J]. Materials Characterization, 62, 488-495(2011).

    [90] Sercombe T, Jones N, Day R et al. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting[J]. Rapid Prototyping Journal, 14, 300-304(2008). http://www.emeraldinsight.com/doi/full/10.1108/13552540810907974

    [91] Bolzoni L. Ruiz-Navas E M, Gordo E. Influence of HIP parameters on the microstructure and mechanical properties of elemental titanium and Ti-6Al-7Nb alloy[C]. European Powder Metallurgy(2012).

    [92] Zhang L C, Klemm D, Eckert J et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy[J]. Scripta Materialia, 65, 21-24(2011). http://www.sciencedirect.com/science/article/pii/S1359646211001461

    [93] Zhang L C, Sercombe T B. Selective laser melting of low-modulus biomedical Ti-24Nb-4Zr-8Sn alloy: Effect of laser point distance[J]. Key Engineering Materials, 520, 226-233(2012). http://www.scientific.net/KEM.520.226

    [94] Liu Y J, Li X P, Zhang L C et al. Processing and properties of topologically optimized biomedical Ti-24Nb-4Zr-8Sn scaffolds manufactured by selective laser melting[J]. Materials Science and Engineering, 642, 268-278(2015). http://www.sciencedirect.com/science/article/pii/S0921509315301428

    [95] Dang X. Overview of development of patent technology in titanium alloy field in China[J]. Advanced Materials Industry, 3, 30-34(2017).

    [96] Shi X, Ma S, Liu C et al. Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks[J]. Optics & Laser Technology, 90, 71-79(2017). http://www.sciencedirect.com/science/article/pii/S0030399216309069

    [97] Li W, Liu J, Zhou Y et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Scripta Materials, 118, 13-18(2016). http://www.sciencedirect.com/science/article/pii/S1359646216300665

    [98] Li W, Liu J, Wen S et al. Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Materials Characterization, 113, 125-133(2016). http://www.sciencedirect.com/science/article/pii/S1044580316300134

    [99] Li W, Liu J, Zhou Y et al. Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties[J]. Journal of Alloys and Compounds, 688, 626-636(2016). http://www.sciencedirect.com/science/article/pii/S0925838816322411

    [100] Li W, Liu J, Zhou Y et al. Texture evolution, phase transformation mechanism and nanohardness of selective laser melted Ti-45Al-2Cr-5Nb alloy during multi-step heat treatment process[J]. Intermetallics, 85, 130-138(2017). http://www.sciencedirect.com/science/article/pii/S0966979516306458

    [101] Li W, Yang Y, Liu J et al. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2in-situ metal matrix composites prepared via selective laser melting[J]. Acta Materialia, 136, 90-104(2017). http://www.researchgate.net/publication/318191682_Enhanced_nanohardness_and_new_insights_into_texture_evolution_and_phase_transformation_of_TiAlTiB_2_in-situ_metal_matrix_composites_prepared_via_selective_laser_melting

    [102] Krakhmalev P, Yadroitsev I. Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti-SiC powder mixtures[J]. Intermetallics, 46, 147-155(2014). http://www.sciencedirect.com/science/article/pii/S0966979513003117

    [103] Attar H, Ehtemam-Haghighi S, Kent D et al. Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting[J]. Materials Science and Engineering, 688, 20-26(2017). http://www.sciencedirect.com/science/article/pii/S0921509317301326

    [104] Attar H, Löber L, Funk A et al. Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting[J]. Materials Science and Engineering, 625, 350-356(2015). http://www.sciencedirect.com/science/article/pii/S0921509314015366

    [105] Attar H, Prashanth K G, Zhang L C et al. Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting[J]. Journal of Materials Science & Technology, 31, 1001-1005(2015). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=clkj201510005&dbname=CJFD&dbcode=CJFQ

    [106] Fischer M, Joguet D, Robin G et al. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders[J]. Materials Science and Engineering, 62, 852-859(2016). http://europepmc.org/abstract/MED/26952492

    [107] Speirs M, Humbeeck J V, Schrooten J et al. The effect of pore geometry on the mechanical properties of selective laser melted Ti-13Nb-13Zr scaffolds[J]. Procedia CIRP, 5, 79-82(2013). http://www.researchgate.net/publication/257745646_The_Effect_of_Pore_Geometry_on_the_Mechanical_Properties_of_Selective_Laser_Melted_Ti-13Nb-13Zr_Scaffolds?ev=prf_cit

    [108] Grigoriev A, Polozov I, Sufiiarov V et al. In-situ synthesis of Ti2AlNb-based intermetallic alloy by selective laser melting[J]. Journal of Alloys and Compounds, 704, 434-442(2017). http://www.sciencedirect.com/science/article/pii/S0925838817305248

    [109] Sharkeev Y P, Eroshenko A Y, Kovalevskaya Z G et al. Structural and phase state of Ti-Nb alloy at selective laser melting of the composite powder[J]. Russian Physics Journal, 59, 1-5(2016). http://link.springer.com/article/10.1007/s11182-016-0790-z

    [110] Wang Q, Han C J, Choma T et al. Effect of Nb content on microstructure, property and in vitro apatite-forming capability of Ti-Nb alloys fabricated via selective laser melting[J]. Materials & Design, 126, 268-277(2017). http://www.sciencedirect.com/science/article/pii/S0264127517303829

    [111] Sing S L, Wang S, Agarwala S et al. Fabrication of titanium based biphasic scaffold using selective laser melting and collagen immersion[J]. International Journal of Bioprinting, 3, 1-7(2017).

    [112] Wang D, Wang Y, Wu S et al. Customized a Ti6Al4V bone plate for complex pelvic fracture by selective laser melting[J]. Materials, 10, 10010035(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5344552/

    [113] Pan C T, Lin C H, Huang Y S et al. Design of interbody fusion cages of Ti6Al4V with gradient porosity using a selective laser melting process for spinal fusion arthroplasty[J]. Journal of Laser Micro/Nanoengineering, 12, 34-44(2017).

    [114] Cheng L W, Cheng C W, Chung K C et al. Sound absorption of metallic sound absorbers fabricated via the selective laser melting process[J]. Applied Physics A, 123, 37-37(2017). http://link.springer.com/article/10.1007/s00339-016-0674-7

    [115] Campanelli S L, Contuzzi N, Ludovico A D et al. Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting[J]. Materials, 7, 4803-4822(2014). http://europepmc.org/abstract/MED/28788707

    [116] Zhao Z G, Bo L, Li L et al. Status and progress of selective laser melting forming technology[J]. Aeronautical Manufacturing Technology, 463, 46-49(2014).

    [117] Ding H Y, Sun Z G, Chu M Q et al. Development and application of selective laser melting technology in civil aircraft[J]. Aeronautical Manufacturing Technology, 473, 102-104(2015).

    CLP Journals

    [1] Ge Yanan, Wu Meiping, Mao Yuyi, Han Jitai. Effect of Scanning Strategy on Forming Precision of Titanium Alloy by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2018, 55(9): 91403

    Li Junfeng, Wei Zhengying, Lu Bingheng. Research Progress on Technology of Selective Laser Melting of Titanium and Titanium Alloys[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11403
    Download Citation