• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 230002 (2020)
Zinan Wu, zhengqin Zhao, Zhongping Wen, Tian Qin, Zhonghua Ou, Xiaojun Zhou, Yong Liu, and Huimin Yue*
Author Affiliations
  • State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
  • show less
    DOI: 10.3788/LOP57.230002 Cite this Article Set citation alerts
    Zinan Wu, zhengqin Zhao, Zhongping Wen, Tian Qin, Zhonghua Ou, Xiaojun Zhou, Yong Liu, Huimin Yue. Research Progress on High Sensitivity and Miniature Optical-Atomic Magnetometer[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230002 Copy Citation Text show less
    References

    [1] Huang X. Empirical research on the loadstone spoon “Si Nan” in ancient China[J]. Studies in the History of Natural Sciences, 36, 361-386(2017).

    [2] Liu T. A summary of the current situation and development of aviation anti submarine[J]. China New Telecommunications, 21, 74-77(2019).

    [3] Dong P, Sun Z, Zou N Y et al. The situation and development trend of foreign magnetic exploration submarine equipment[J]. Ship Science and Technology, 40, 166-169(2018).

    [4] Wang G Y, Ma H Y, Zhang Y Q. Magnetic gradient target positioning method of airborne MAD submarine detection[J]. Ordnance Industry Automation, 30, 32-34, 38(2011).

    [5] Wang X F, Sun X P, Zhao X C et al. Progress in biomagnetic signal measurements with ultra-sensitive atomic magnetometers[J]. Chinese Journal of Lasers, 45, 0207012(2018).

    [6] Baranga A B A, Hoffman D, Xia H et al. An atomic magnetometer for brain activity imaging[C]∥14th IEEE-NPSS Real Time Conference, 2005, June 4-10, 2005, Stockholm, Sweden., 417-418(2005).

    [7] Liu G, Li X, Sun X et al. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature[J]. Journal of Magnetic Resonance, 237, 158-163(2013).

    [8] Wu S G, Tan Y H, Zhou J P. Application of G-880 cesium optical-pump marine magnetometer to marine engineering detection[J]. Marine Sciences, 30, 5-9(2006).

    [9] Kuroda M, Yamanaka S, Isobe Y. Detection of plastic deformation in low carbon steel by SQUID magnetometer using statistical techniques[J]. NDT & E International, 38, 53-57(2005). http://www.sciencedirect.com/science/article/pii/S0963869504000866

    [10] Maire P L, Bertrand L, Munschy M et al. Aerial magnetic mapping with an unmanned aerial vehicle and a fluxgate magnetometer: a new method for rapid mapping and upscaling from the field to regional scale[J]. Geophysical Prospecting, 68, 2307-2319(2020).

    [11] Ding H J, Sui H T. The recent progress of the Fluxgate Magnetometer and sensor[J]. Progress in Geophysics, 19, 743-745(2004).

    [12] Zhang C D. Recent advances in the research and development of quantum magnetometers[J]. Geophysical and Geochemical Exploration, 29, 283-287(2005).

    [13] Zhang C D, Dong H B. A review of quantum magnetometers[J]. Chinese Journal of Engineering Geophysics, 1, 499-507(2004).

    [14] Yariv A, Winsor H V. Proposal for detection of magnetic fields through magnetostrictive perturbation of optical fibers[J]. Optics Letters, 5, 87-89(1980).

    [15] Shen T, Sun B C, Feng Y. Mach-Zehneder interference all-fiber sensor for measurement of magnetic field and temperature[J]. Optics and Precision Engineering, 26, 1338-1345(2018).

    [16] Kleiner R, Koelle D, Ludwig F et al. Superconducting quantum interference devices: State of the art and applications[J]. Proceedings of the IEEE, 92, 1534-1548(2004).

    [17] Crété D, Sène A, Labbé A et al. Evaluation of Josephson junction parameter dispersion effects in arrays of HTS SQUIDs[J]. IEEE Transactions on Applied Superconductivity, 28, 1-6(2018).

    [18] Hong T, Wang H, Zhang Y et al. Flux modulation scheme for direct current SQUID readout revisited[J]. Applied Physics Letters, 108, 062601(2016).

    [19] Allred J C, Lyman R N, Kornack T W et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 89, 130801(2002).

    [20] Grosz A[M]. Haji-Sheikh M J, Mukhopadhyay S C. High sensitivity magnetometers(2017).

    [21] Fescenko I, dark atoms[EB/OL]. -04-08)[ 2020-04-09]. https:∥arxiv., org/abs/1404, 2215(2014).

    [22] Weis A, Sautenkov V A, Hänsch T W. Observation of ground-state Zeeman coherences in the selective reflection from cesium vapor[J]. Physical Review A, 45, 7991-7996(1992).

    [23] Gross B, Papageorgiou N, Sautenkov V et al. Velocity selective optical pumping and dark resonances in selective reflection spectroscopy[J]. Physical Review A-Atomic, Molecular, and Optical Physics, 55, 2973-2981(1997).

    [24] Appelt S. Ben-Amar Baranga A, Young A R, et al. Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells[J]. Physical Review A, 59, 2078-2084(1999).

    [25] Gao X M, Zeng X Y, Shan X Z et al. The research progress of K atomic magnetometer[J]. Optical Instruments, 40, 85-94(2018).

    [26] Knappe S, Alem O, Sheng D et al. Microfabricated optically-pumped magnetometers for biomagnetic applications[J]. Journal of Physics: Conference Series, 723, 012055(2016).

    [27] Budker D, Romalis M. Optical magnetometry[J]. Nature Physics, 3, 227-234(2007).

    [28] Kitching J, Knappe S, Shah V et al. Microfabricated atomic magnetometers and applications[C]∥2008 IEEE International Frequency Control Symposium, May 19-21, 2008, Honolulu, HI, USA., 789-794(2008).

    [29] Kitching J, Donley E A, Knappe S et al. NIST on a chip: Realizing SI units with microfabricated alkali vapour cells[J]. Journal of Physics: conference Series, 723, 012056(2016).

    [30] Krzyzewski S P, Perry A R, Gerginov V et al. Characterization of noise sources in a microfabricated single-beam zero-field optically-pumped magnetometer[J]. Journal of Applied Physics, 126, 044504(2019).

    [31] Schwindt P, Lindseth B J, Knappe S et al. Chip scale atomic magnetometers[C]∥2006 IEEE International Magnetics Conference (INTERMAG), May 8-12, 2006, San Diego, CA, USA., 386(2006).

    [32] Happer W, Wijngaarden W A. An optical pumping primer[J]. Hyperfine Interactions, 38, 435-470(1987).

    [33] Alem O, Sander T H, Mhaskar R et al. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers[J]. Physics in Medicine and Biology, 60, 4797-4811(2015).

    [34] Dellis A T, Shah V, Donley E A et al. Low helium permeation cells for atomic microsystems technology[J]. Optics Letters, 41, 2775-2778(2016).

    [35] Jarvis K N, Devlin J A, Wall T E et al. Blue-detuned magneto-optical trap[J]. Physical Review Letters, 120, 083201(2017).

    [36] Colangelo G, Ciurana F M, Bianchet L C et al. Simultaneous tracking of spin angle and amplitude beyond classical limits[J]. Nature, 543, 525-528(2017).

    [37] Happer W, Tang H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors[J]. Physical Review Letters, 31, 273-276(1973).

    [38] Li J D, Quan W, Zhou B Q et al. SERF atomic magnetometer - Recent advances and applications: a review[J]. IEEE Sensors Journal, 18, 8198-8207(2018).

    [39] Kitching J. Chip-scale atomic devices[J]. Applied Physics Reviews, 5, 031302(2018).

    [40] Knappe S, Velichansky V L, Robinson H G et al. Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers[J]. Review of Scientific Instruments, 74, 3142-3145(2003).

    [41] Li H, Jiang M, Zhu Z N et al. Calibration of magnetic field measurement ability of rubidium xenon atomic magnetometer system[J]. Acta Physica Sinica, 68, 160701(2019).

    [42] Knappe S, Velichansky V, Robinson H G et al. Atomic vapor cells for miniature frequency references[C]∥IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of, 31-32(2003).

    [43] Yang W, Conkey D B, Wu B et al. Atomic spectroscopy on a chip[J]. Nature Photonics, 1, 331-335(2007).

    [44] Balabas M V, Budker D, Kitching J et al. Magnetometry with millimeter-scale antirelaxation-coated alkali-metal vapor cells[J]. Journal of the Optical Society of America B, 23, 1001-1006(2005).

    [45] Xu G B, Huang H, Zhan M H et al. Experimental evaluation of inductively coupled plasma deep silicon etching[J]. Chinese Journal of Vacuum Science and Technology, 33, 832-835(2013).

    [46] Du C, Liu C R, Yin X et al. Research status and influencing factors of anodic bonding[J]. Materials Science and Technology, 26, 82-88(2018).

    [47] Liew L A, Knappe S, Moreland J et al. Microfabricated alkali atom vapor cells[J]. Applied Physics Letters, 84, 2694-2696(2004).

    [48] Gong F, Jau Y, Jensen K et al. Electrolytic fabrication of atomic clock cells[J]. Review of Scientific Instruments, 77, 076101(2006).

    [49] Knappe S, Gerginov V. Schwindt P D D, et al. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability[J]. Optics Letters, 30, 2351-2353(2005).

    [50] You Z, Ma B, Ruan Y et al. Microfabrication of MEMS alkali metal vapor cells for chip-scale atomic devices[J]. Optics and Precision Engineering, 21, 1440-1446(2013).

    [51] Su J, Ke D, Zhong W et al. Microfabrication of 85Rb vapor cell for chip-scale atomic clocks[C]∥2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum, April 20-24, 2009, Besanc, 1016-1018(2009).

    [52] Zhang C, Zhang S Y, Guo D Z et al. Micro Rb atomic vapor cells for the chip-scale atomic clock[C]∥2014 IEEE International Frequency Control Symposium (FCS), May 19-22, 2014, Taipei, Taiwan, China., 1-3(2014).

    [53] Maurice V, Rutkowski J, Kroemer E et al. Microfabricated vapor cells filled with a cesium dispensing paste for miniature atomic clocks[J]. Applied Physics Letters, 110, 164103(2017).

    [54] Li X K, Wang F F, Liang D C et al. Fabrication of chip-scale alkali metal cells[J]. Science in China (Information Sciences), 45, 693-700(2015).

    [55] Karlen S, Gobet J, Overstolz T et al. Lifetime assessment of RbN3-filled MEMS atomic vapor cells with Al2O3 coating[J]. Optics Express, 25, 2187-2194(2017).

    [56] Burt R C. Sodium by electrolysis through glass[D]. Pasadena: California Institute of Technology(1926).

    [57] Kang S, Mott R P, Gilmore K A et al. A low-power reversible alkali atom source[J]. Applied Physics Letters, 110, 244101(2017).

    [58] Graf M T, Kimball D F, Rochester S M et al. Relaxation of atomic polarization in paraffin-coated cesium vapor cells[J]. Physical Review A, 72, 023401(2005).

    [59] Seltzer S J, Meares P J. -11-01)[2020-04-09]. https:∥arxiv.org/abs/physics/0611014.(2006).

    [60] Sun W M, Liu S Q, Zhao W H[M]. Optical atomic magnetometer(2015).

    [61] Schwindt P D D, Lindseth B, Knappe S et al. Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique[J]. Applied Physics Letters, 90, 081102(2007).

    [62] Schwindt P D D, Johnson C N. A two-color pump probe atomic magnetometer for magnetoencephalography[C]∥IEEE 2010 International Frequency Control Symposium, June 2-4, 2010,, 371-375(2010).

    [63] Shah V, Romalis M V. Spin-exchange relaxation-free magnetometry using elliptically polarized light[J]. Physical Review A, 80, 013416(2009).

    [64] Preusser J, Gerginov V, Knappe S et al. A microfabricated photonic magnetometer[C]∥Sensors, 2008 IEEE, October 26-29, 2008, Lecce, Italy., 344-346(2008).

    [65] Mhaskar R, Knappe S, Kitching J. A low-power, high-sensitivity micromachined optical magnetometer[J]. Applied Physics Letters, 101, 241105(2012).

    [66] QiangH, KangX, ZongjunH, et al., 2013, 760/761/762: 896- 900.

    [67] Fang J C, Li R J, Duan L H et al. Study of the operation temperature in the spin-exchange relaxation free magnetometer[J]. Review of Scientific Instruments, 86, 073116(2015).

    [68] Schwindt P, Johnson C N[s. n.]. Atomic magnetometer for human magnetoencephalograpy [S.l.]: [s. n.](2010).

    [69] Johnson C. Schwindt P D D, Weisend M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer[J]. Applied Physics Letters, 97, 243703(2010).

    [70] Jiménez-Martínez R, Knappe S, Kitching J. An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening[J]. The Review of Scientific Instruments, 85, 045124(2014).

    [71] Castagna N, Weis A. Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect[J]. Physical Review A, 84, 053421(2011).

    [72] Seltzer S J. Developments in alkali-metal atomic magnetometry[D]. Princeton: Princeton University(2008).

    [73] Dong H F, Fang J C, Zhou B Q et al. Three-dimensional atomic magnetometry[J]. The European Physical Journal Applied Physics, 57, 21004(2012).

    [74] Dong H F, Lin H B, Tang X B. Atomic-signal-based zero-field finding technique for unshielded atomic vector magnetometer[J]. IEEE Sensors Journal, 13, 186-189(2013).

    [75] Huang H C, Dong H F, Chen L et al. Single-beam three-axis atomic magnetometer[J]. Applied Physics Letters, 109, 062404(2016).

    [76] Zhang H. Magnetic noise suppression methods and experiment researches based on ultrahigh sensitive SERF atomic magnetometer[D]. Nanjing: Southeast University(2016).

    [77] Sheng D, Perry A R, Krzyzewski S P et al. A microfabricated optically-pumped magnetic gradiometer[J]. Applied Physics Letters, 110, 031106(2017).

    [78] Dang H, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 97, 151110(2010).

    [79] Perry A R, Sheng D, Krzyzewski S P et al. Microfabricated optically-pumped magnetic arrays for biomedical imaging[J]. Proceeding of SPIE, 10119, 101190V(2017).

    [80] Patton B, Zhivun E, Hovde D et al. All-optical vector atomic magnetometer[J]. Physical Review Letters, 113, 013001(2014).

    [81] He K, Wan S, Sheng J et al. A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography[J]. Review of Scientific Instruments, 90, 064102(2019).

    [82] Zhang B. Research on the compact optically pumped Cs atomic magnetometer[D]. Hangzhou: Zhejiang University(2015).

    [83] Liu X J, Yang Y H, Ding M et al. Single-fiber Sagnac-like interferometer for optical rotation measurement in atomic spin precession detection[J]. Journal of Lightwave Technology, 37, 1317-1324(2019).

    [84] Schwindt P D D, Knappe S, Shah V et al. Chip-scale atomic magnetometer[J]. Applied Physics Letters, 85, 6409-6411(2004).

    [85] Soheilian A, Ranjbaran M, Tehranchi M M. Position and direction tracking of a magnetic object based on an Mx-atomic magnetometer[J]. Scientific Reports, 10, 1294(2020).

    [86] Jimenez-Martinez R, Griffith W C, Wang Y J et al. Sensitivity comparison of mx and frequency-modulated Bell-Bloom Cs magnetometers in a microfabricated cell[J]. IEEE Transactions on Instrumentation and Measurement, 59, 372-378(2010).

    [87] Kitching J, Knappe S, Griffith W C et al. Uncooled, millimeter-scale atomic magnetometers with femtotesla sensitivity[C]∥Sensors, 2009 IEEE, October 25-28, 2009, Christchurch, New Zealand., 1844-1847(2009).

    [88] Pollinger A, Ellmeier M, Magnes W et al. Enable the inherent omni-directionality of an absolute coupled dark state magnetometer for e.g. scientific space applications[C]∥2012 IEEE International Instrumentation and Measurement Technology Conf, 33-36(2012).

    [89] or polarization-modulated light[EB/OL]. -05-28) [2020-04-06]. https:∥arxiv., org/abs/1305, 6574(2013).

    [90] Jiménez-Martínez R, Griffith W C, Knappe S et al. High-bandwidth optical magnetometer[J]. Journal of the Optical Society of America B, 29, 3398-3403(2012).

    [91] Kominis I K, Kornack T W, Allred J C et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 422, 596-599(2003).

    [92] Shah V, Knappe S. Schwindt P D D, et al. Subpicotesla atomic magnetometry with a microfabricated vapour cell[J]. Nature Photonics, 1, 649-652(2007).

    [93] Griffith W C, Knappe S, Kitching J. Femtotesla atomic magnetometry in a microfabricated vapor cell[J]. Optics Express, 18, 27167-27172(2010).

    [94] Wyllie R, Kauer M, Smetana G S et al. Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array[J]. Physics in Medicine and Biology, 57, 2619-2632(2012).

    [95] Hunter D, Piccolomo S, Pritchard J D et al. Free-induction-decay magnetometer based on a microfabricated Cs vapor cell[J]. Physical Review Applied, 10, 014002(2018).

    [96] Arnold D, Siegel S, Grisanti E et al. A rubidium Mx-magnetometer for measurements on solid state spins[J]. Review of Scientific Instruments, 88, 023103(2017). http://www.ncbi.nlm.nih.gov/pubmed/28249519

    [97] Li S G. Investigation on the atomic magnetometer[D]. Hangzhou: Zhejiang University(2009).

    [98] Li J J, Du P C, Fu J Q et al. Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography[J]. Chinese Physics B, 28, 145-149(2019).

    [99] Wang X T. Development of miniaturized spin-exchange relaxation-free atomic magnetometer[D]. Kunming: Yunnan University(2019).

    [100] Huang S J, Zhang G Y, Hu Z H et al. Human magnetoencephalography measurement by highly sensitive SERF atomic magnetometer[J]. Chinese Journal of Lasers, 45, 1204006(2018).

    [101] Baillet S. Magnetoencephalography for brain electrophysiology and imaging[J]. Nature Neuroscience, 20, 327-339(2017).

    [102] Bison G, Wynands R, Weis A. A laser-pumped magnetometer for the mapping of human cardiomagnetic fields[J]. Applied Physics B, 76, 325-328(2003).

    [103] Xia H. Ben-Amar Baranga A, Hoffman D, et al. Magnetoencephalography with an atomic magnetometer[J]. Applied Physics Letters, 89, 211104(2006).

    [104] Alem O, Benison A M, Barth D S et al. Magnetoencephalography of epilepsy with a microfabricated atomic magnetrode[J]. The Journal of Neuroscience, 34, 14324-14327(2014). http://dx.doi.org/10.1523/jneurosci.3495-14.2014

    [105] Kamada K, Sato D, Ito Y et al. Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer[J]. Japanese Journal of Applied Physics, 54, 026601(2015).

    [106] Boto E, Bowtell R, Fromhold K P et al. On the potential of a new generation of magnetometers for MEG: a beamformer simulation study[J]. PLoS One, 11, 0157655(2016).

    [107] Sheng J W, Wan S G, Sun Y F et al. Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer[J]. The Review of Scientific Instruments, 88, 094304(2017). http://europepmc.org/abstract/MED/28964239

    [108] Korth H, Strohbehn K, Tejada F et al. Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb[J]. Journal of Geophysical Research: Space Physics, 121, 7870-7880(2016).

    [109] Khvalin A L. A vector magnetometer for measuring weak fields[J]. Measurement Techniques, 57, 1184-1188(2015).

    [110] Bison G, Bondar V, Schmidt-Wellenburg P et al. Sensitive and stable vector magnetometer for operation in zero and finite fields[J]. Optics Express, 26, 17350-17359(2018).

    [111] Alem O, Mhaskar R, Jiménez-Martínez R et al. Magnetic field imaging with microfabricated optically-pumped magnetometers[J]. Optics Express, 25, 7849-7858(2017). http://europepmc.org/abstract/MED/28380903

    [112] Sun W M, Huang Q, Huang Z J et al. All-Optical Vector Cesium Magnetometer[J]. Chinese Physics Letters, 34, 058501(2017).

    Zinan Wu, zhengqin Zhao, Zhongping Wen, Tian Qin, Zhonghua Ou, Xiaojun Zhou, Yong Liu, Huimin Yue. Research Progress on High Sensitivity and Miniature Optical-Atomic Magnetometer[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230002
    Download Citation