• Chinese Physics B
  • Vol. 29, Issue 10, (2020)
Chao Wang1、†, Ying-Cai Chen1, Shuang Zhang2, Hang-Kai Qi3, and Meng-Bo Luo3
Author Affiliations
  • 1Department of Physics, Taizhou University, Taizhou 38000, China
  • 2College of Science, Beibu Gulf University, Qinzhou 535011, China
  • 3Department of Physics, Zhejiang University, Hangzhou 10027, China
  • show less
    DOI: 10.1088/1674-1056/abaedc Cite this Article
    Chao Wang, Ying-Cai Chen, Shuang Zhang, Hang-Kai Qi, Meng-Bo Luo. Distribution of a polymer chain between two interconnected spherical cavities[J]. Chinese Physics B, 2020, 29(10): Copy Citation Text show less

    Abstract

    The equilibrium distribution of a polymer chain between two interconnected spherical cavities (a small one with radius Rs and a large one with radius Rl) is studied by using Monte Carlo simulation. A conformational transition from a double-cavity-occupation (DCO) state to a single-cavity-occupation (SCO) state is observed. The dependence of the critical radius of the small cavity (RsC) where the transition occurs on Rl and the polymer length N can be described by RsC∝N1/3Rl1-1/3ν with ν being the Flory exponent, and meanwhile the equilibrium number (ms) of monomers in the small cavity for the DCO phase can be expressed as ms = N/((Rl/Rs)3 + 1), which can be quantitatively understood by using the blob picture. Moreover, in the SCO phase, the polymer is found to prefer staying in the large cavity.
    $$ \begin{eqnarray}{U}_{{\rm{FENE}}}=-\displaystyle \frac{{k}_{{\rm{F}}}}{2}{({b}_{\max }-{b}_{0})}^{2}\mathrm{ln}\left[1-{\left(\displaystyle \frac{b-{b}_{0}}{{b}_{\max }-{b}_{0}}\right)}^{2}\right]\end{eqnarray}$$(1)

    View in Article

    $$ \begin{eqnarray}{U}_{{\rm{M}}}(r)=\left\{\begin{array}{ll}\varepsilon \{\exp [-2{\alpha }_{{\rm{M}}}(r-{r}_{\min })]-2\exp [-{\alpha }_{{\rm{M}}}(r-{r}_{{\rm{\min }}})]\}-{U}_{{\rm{cut}}}, & \,r\le {r}_{{\rm{cut}}},\\ 0, & \ \ r\gt {r}_{{\rm{cut}}},\end{array}\right.\end{eqnarray}$$(2)

    View in Article

    $$ \begin{eqnarray}\xi \sim {\left(\displaystyle \frac{{D}^{3}}{N}\right)}^{\nu /(3\nu -1)}\end{eqnarray}$$(3)

    View in Article

    $$ \begin{eqnarray}F\sim \displaystyle \frac{{D}^{3}}{{\xi }^{3}}.\end{eqnarray}$$(4)

    View in Article

    $$ \begin{eqnarray}F\sim \displaystyle \frac{{R}_{{\rm{s}}}^{3}}{{\xi }_{{\rm{s}}}^{3}}+\displaystyle \frac{{R}_{{\rm{l}}}^{3}}{{\xi }_{{\rm{l}}}^{3}}.\end{eqnarray}$$(5)

    View in Article

    $$ \begin{eqnarray}{\rm{d}}F/{\rm{d}}{\xi }_{{\rm{s}}}=0.\end{eqnarray}$$(6)

    View in Article

    $$ \begin{eqnarray}\displaystyle \frac{{R}_{{\rm{s}}}^{3}}{{\xi }_{{\rm{s}}}^{4}}+\displaystyle \frac{{R}_{{\rm{l}}}^{3}}{{\xi }_{{\rm{l}}}^{4}}\displaystyle \frac{{\rm{d}}{\xi }_{{\rm{l}}}}{{\rm{d}}{\xi }_{{\rm{s}}}}=0.\end{eqnarray}$$(7)

    View in Article

    $$ \begin{eqnarray}{\xi }_{{\rm{l}}}={R}_{{\rm{l}}}^{3\nu /(3\nu -1)}{\left(N-\displaystyle \frac{{R}_{{\rm{s}}}^{3}}{{\xi }_{{\rm{s}}}^{3-1/\nu }}\right)}^{\nu /(1-3\nu )}.\end{eqnarray}$$(8)

    View in Article

    $$ \begin{eqnarray}\displaystyle \frac{{\rm{d}}{\xi }_{{\rm{l}}}}{{\rm{d}}{\xi }_{{\rm{s}}}}=-\displaystyle \frac{{R}_{{\rm{s}}}^{3}}{{R}_{{\rm{l}}}^{3}}\displaystyle \frac{{\xi }_{{\rm{l}}}^{4-1/\nu }}{{\xi }_{{\rm{s}}}^{4-1/\nu }}.\end{eqnarray}$$(9)

    View in Article

    $$ \begin{eqnarray}{\xi }_{{\rm{s}}}={\xi }_{{\rm{l}}},\end{eqnarray}$$(10)

    View in Article

    $$ \begin{eqnarray}{R}_{{\rm{sC}}}\sim {\left(\displaystyle \frac{{R}_{{\rm{l}}}^{3}}{N}\right)}^{\nu /(3\nu -1)}.\end{eqnarray}$$(11)

    View in Article

    $$ \begin{eqnarray}{m}_{{\rm{s}}}=\displaystyle \frac{N}{({R}_{{\rm{l}}}^{3}/{R}_{{\rm{s}}}^{3}+1)},\end{eqnarray}$$(12)

    View in Article

    Chao Wang, Ying-Cai Chen, Shuang Zhang, Hang-Kai Qi, Meng-Bo Luo. Distribution of a polymer chain between two interconnected spherical cavities[J]. Chinese Physics B, 2020, 29(10):
    Download Citation