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The equilibrium distribution of a polymer chain between two interconnected spherical cavities (a small one with
radius Rs and a large one with radius Rl) is studied by using Monte Carlo simulation. A conformational transition from
a double-cavity-occupation (DCO) state to a single-cavity-occupation (SCO) state is observed. The dependence of the
critical radius of the small cavity (RsC) where the transition occurs on Rl and the polymer length N can be described by
RsC ∝ N1/3R1−1/3ν

l with ν being the Flory exponent, and meanwhile the equilibrium number (ms) of monomers in the
small cavity for the DCO phase can be expressed as ms = N/((Rl/Rs)

3 + 1), which can be quantitatively understood by
using the blob picture. Moreover, in the SCO phase, the polymer is found to prefer staying in the large cavity.
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1. Introduction
Study on the statics and dynamics of polymers between

two spaces interconnected by a small pore is very impor-
tant for understanding the exchange of biopolymers in many
biological processes, such as transportation of proteins and
RNA through channels in biological membranes,[1–3] ejection
of DNA from a virus capsid into host cells,[4] etc. It is also
very helpful for developing related biological nanotechnol-
ogy, such as genome mapping,[5–9] drug delivery and gene
therapy,[10,11] DNA sequencing, controlling, separation and
packaging,[12–21] etc.

The translocation dynamics of polymer from the cis space
to the trans space through a narrow pore has been studied ex-
tensively in the last two decades. To thread through the pore,
the polymer has to adopt some special configurations inside
the pore since the size of the pore is much smaller than that of
the polymer in the free space. That leads to the reduction of the
conformation entropy for polymer translocation. Therefore, it
is very difficult for the polymer to transfer spontaneously from
the cis space to the trans space. In experiment and simulation,
the transferring process can be activated by introducing an ex-
ternal driving force, such as the electrical field force,[19–22]

the flow of fluid,[23–25] etc. When the driving force is large
enough, the polymer can move across the pore and enter into
the trans space. For a flexible polymer chain slowly dragged
by one end into a nanotube from an infinite space, Klushin et

al. found that the polymer is quickly sucked into the tube and
undergoes an obvious phase transition from a flower state to an
imprisoned state when the distance of the polymer end from
the tube entrance is bigger than a critical value.[26] When the
polymer is completely confined in the channel, many config-
urations are forbidden, but the distribution of polymer is still
complicated. Depending on the radius of the channel, there
are four scaling regimes,[27] i.e., the classic Odijk regime, the
transition regime, the extended de gennes regime and the clas-
sic de gennes regime, in which different conformation modes
are found. Moreover, the conformation of the polymer is also
affected by other important factors, such as the flexibility of
the polymer,[28–30] the topology of the polymer,[31,32] the ge-
ometry of the channel,[33] the flexibility of the channel,[34]

etc. Klushin et al. also predicted that the reverse process, i.e.,
the ejection of polymer from a nanotube into an infinite trans
space, would occur smoothly without any transition.[26] How-
ever, when the trans space is finite (e.g., a spherical cavity), it
was found that there is an obvious phase transition of the poly-
mer from a partially ejected state to a completely ejected state
with the increase of the radius of the spherical cavity.[35] For
a flexible polymer initially confined in a small spherical cav-
ity connected by an infinite trans space, the polymer can es-
cape eventually from the cavity because of so-called entropic
force.[36,37] However, when the attractive interaction between
the polymer and the inner wall of the cavity is considered,
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phase transition from an ejected state to a packaged state is
found.[38] When the polymer is completely confined in a sin-
gle cavity, the polymer may be desorbed or adsorbed, depend-
ing on the strength of the attraction between polymer and the
wall of the cavity.[39] Moreover, there are more conformation
transitions in a single cavity, such as coil–helix transition of
semiflexible polymers,[40] entropy-induced separation of bi-
nary semiflexible ring polymer mixtures,[41] and DNA com-
paction transition,[42] etc.

Recently, Cifra et al. have studied the conformation and
distribution of flexible and semiflexible polymers in an array
of nanoposts, and found that the polymer can be confined in
one of the channel-like interstitial volumes between nanoposts
or partition among these volumes, depending on the chain
stiffness and the crowding effect imposed by nanoposts.[43–46]

This is similar to the distribution behavior of polymer confined
in two interconnected cavities.[47–50] Experimentally, Nyky-
panchuk et al. have studied the partitioning of a single DNA
in two interconnected spherical cavities prepared by the col-
loidal templating method.[48] For the weakly or moderately
confined case, the DNA chain is found to maximize its con-
figurational entropy by partitioning toward the larger cavity.
While for the strongly confined case, the DNA chain is ob-
served to occupy both the two cavities and split its segments
between the two cavities.[48] Simulationly, Cifra et al. have
studied the partitioning of flexible or semiflexible polymers
between two interconnected spherical cavities.[49,50] Based on
the distribution probability of segment in one of the cavity, the
free energy landscape was calculated. With the increase of the
polymer length or the decrease of the size of the cavities, it
was found that the convex curvature in middle region of the
free energy landscape turns gradually into a concave curva-
ture, indicating that the polymer undergoes a conformational
transition from the single cavity occupation to the conforma-
tion bridging the two cavities.[49] However, it is difficult to
obtain the critical parameter conditions of the transition from
the free energy landscape, and then the phase diagram and the
corresponding physical mechanisms are not clear yet.

In this work, the equilibrium distribution of a polymer
chain between two interconnected spherical cavities (a small
one with radius Rs and a large one with radius Rl) is studied
by using Monte Carlo simulation. Depending on the size of the
cavities, we find an obvious phase transition between a single-
cavity-occupation state, where all the monomers of the poly-
mer are in one of the cavities, and a double-cavity-occupation

state, where the polymer adopts conformations bridging the
two cavities. The main objective of the present work is to
obtain the relations between the polymer length and the the
critical size of the cavities where the transition occurs, and
uncover the corresponding physical mechanisms by using the
blob theory.

2. Simulation model and method
Simulations are carried out in three-dimensional (3D)

space. Figure 1 shows a two-dimensional (2D) sketch of the
simulation geometry and the polymer model used in simula-
tion. Two spherical cavities (the small one and the large one)
are connected by a small hole. The radii of the small and the
large cavities are Rs and Rl, respectively, and the diameter of
the hole is Dh. The polymer is confined in the two cavities.

x
z

Rl

Rs

mN↩m

Fig. 1. A 2D sketch of the simulation model. Two spherical cavities, a small
one with radius Rs and a large one with radius Rl, are connected by a small
hole with diameter Dh. The polymer is confined in the two cavities.

The polymer is modeled as a coarse-grained off-lattice
bead spring chain.[51] In this model, the polymer with length
N is formed by N identical monomers connected sequentially
by bonds. There are only two types of interactions: bonded in-
teraction between bonded monomers and non-bonded interac-
tion between non-bonded monomers. The bonded interaction
is described by the finitely extensible nonlinear elastic (FENE)
potential

UFENE =−kF

2
(bmax−b0)

2 ln

[
1−
(

b−b0

bmax−b0

)2
]

(1)

with the spring constant kF = 40, the average bond length
b0 = 0.7, the maximum bond length bmax = 1, and the min-
imum bond length bmin = 0.4.[51] Here b is the bond length.
The non-bonded interaction is described by the Morse poten-
tial

UM(r) =
{

ε{exp[−2αM(r− rmin)]−2exp[−αM(r− rmin)]}−Ucut, r ≤ rcut,

0, r > rcut,
(2)

where αM = 24, rmin = 0.8, rcut = 1, ε = 1,[51] and Ucut is a special value that ensures UM(rcut) = 0. There is only steric
interaction between the monomer and the inner wall of the two cavities.
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Monte Carlo method is adopted to mimic the motion
of the monomer. For each trial move, we randomly se-
lected a monomer and change its position with a random
displacement ∆𝑟 = ∆x𝑖 + ∆y𝑗 + ∆z𝑘, where ∆x, ∆y, and
∆z are chosen randomly from the interval (−0.25, 0.25).
Based on the the standard Metropolis algorithm, the new po-
sition of the selected monomer is accepted with a probabil-
ity min[1,exp(−∆U/kBT )], where ∆U represents the energy
change caused by the trial move. The time unit is one Monte
Carlo step (MCS) during which N moves are tried.

The whole polymer is in the large cavity at the begin-
ning of the simulation. We at first run a sufficiently long time
t0 to equilibrate the polymer, and then counter the number of
monomers (ms) in the small sphere. Here, ms = 0 or N indi-
cates that the whole polymer occupies only one of the two
cavities, i.e., the polymer is at the single-cavity-occupation
state (the SCO state). Specifically, the whole polymer is in
the large cavity for ms = 0 and in the small cavity for ms = N.
While 0 < ms < N implies that the whole polymer occupies
the two cavities simultaneously, i.e., the polymer is at the
double-cavity-occupation state (the DCO state). The result of
ms shown in this work are averaged over nsam (= 104) inde-
pendent samples. The probabilities of the whole polymer in
the small cavity (Ps) and in the large cavity (Pl) are defined
as ns/nsam and nl/nsam, respectively, where ns and nl are the
number of samples satisfying ms =N and ms = 0, respectively.
Therefore, the probability of the SCO state PSCO = Ps +Pl.

In this work, kBT and bmax are set as the units of energy
and length, respectively, where kB is the Boltzmann constant
and T is the temperature. In our model, the size of the hole is
an important parameter. It determines the equilibrium time for
the polymer reaching the finial equilibrium state, but dose not
influence the equilibrium distribution of the polymer between
the two cavities. When the hole size is big, the polymer can
reach the finial equilibrium state quickly, but the fluctuation
of the equilibrium distribution is large. Therefore, we here
chose a relatively small hole with diameter Dh = 0.2 to ensure
the monomers pass through the hole one by one. Correspond-
ingly, we chose a large enough t0 (> 107) to equilibrate the
polymer.

3. Results and discussion
3.1. The symmetric twin-cavity system

At first, the equilibrium distribution of polymer in the
symmetric twin-cavity system (Rs = Rl = R) is studied. Fig-
ure 2 shows the dependence of the SCO probability PSCO on
the radius of the cavity R for different Ns. We can see that
PSCO as a function of R contains three different regimes. In the
small R regime, PSCO is nearly 0, meaning that the polymer
adopts configurations bridging the two cavities, i.e., the poly-
mer is at the DCO state. In the large R regime, PSCO is roughly

1, indicating that the whole polymer is in one of the two cav-
ities, i.e., the polymer is at the SCO state. In the moderate R
regime, PSCO increases quickly from 0 to 1 with increasing R,
i.e., a phase transition from the DCO state to the SCO state
occurs. To give approximately the position of the phase transi-
tion, we here define the radius of the cavity where PSCO = 0.5
as the critical radius RC, as shown in Fig. 2. RC is dependent
on the polymer length N. With N increasing, the size of each
cavity that can accommodate the whole polymer is bigger and
bigger, leading to the monotonous increase of RC with N. We
find that the dependence of RC on N can be specifically de-
scribed by a simple scaling relation RC ∝ N0.59, as shown in
the inset of Fig. 2. Interestingly, for any given N, the critical
radius RC is roughly equal to the radius of gyration (Rg0) of
polymer in free space, as shown the red line in the inset of
Fig. 2.
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Fig. 2. The SCO probability PSCO as a function of R for different N. The
radius where PSCO = 0.5 is defined as the critical radius RC. The inset shows
the phase diagram for the symmetric twin-cavity system. The red line shows
the radius of gyration (Rg0) of polymer in free space as a function of N.

3.2. The asymmetric system

We then studied the equilibrium distribution of polymer
in the asymmetric system (Rs <Rl). Figure 3 shows the depen-
dence of the SCO probability PSCO on the radius of the small
cavity Rs for different radii of large cavity Rl (< RC, RC is
the critical radius of the cavity for the symmetric twin-cavity
system), where N = 60 and the corresponding RC = 3.5 (as
shown in the inset of Fig. 2). We can see that there is also an
obvious transition from PSCO = 1 (the SCO state) to PSCO = 0
(the DCO state) with increasing Rs. Similarly, we define the
radius of the small cavity where PSCO = 0.5 as the critical ra-
dius RsC, as shown in Fig. 3. RsC is dependent on the size of
the large cavity and the length of the polymer. With Rl de-
creasing or N increasing, the confinement effect of the cavities
on the polymer is stronger and stronger, which would com-
pel the polymer to adopt bridging configurations between the
two cavities to maximize the conformational entropy at rela-
tively small value of Rs, leading to the monotonous decrease
of RsC with decreasing Rl or increasing N. We find that the
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monotonous dependence of RsC on Rl and N can be specifi-
cally expressed as RsC ∼ R9/4

l N−3/4, as shown in the inset of
Fig. 4. Based on RsC, we can also specifically define the two
equilibrium states (phases) when Rl < RC: the DCO phase at
Rs > RsC and the SCO phase at Rs < RsC, as shown in Fig. 4.
However, when Rl is large (Rl > RC), we find that PSCO is al-
ways bigger than 0.5 for any given Rs (results not shown), i.e.,
there is only the SCO state when Rl > RC, as shown in Fig. 4.
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Fig. 3. The SCO probability PSCO as a function of the radius of the
small cavity Rs for different Rl (< RC), where N = 60. The radius where
PSCO = 0.5 is defined as the critical radius RsC.
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In the SCO phase, the whole polymer is in one of the two
cavities. But it is not necessary that the whole polymer is in
the small cavity and in the large cavity with the same proba-
bility. Figure 5 shows the dependence of the relative probabil-
ities of the whole polymer in the small cavity (Ps/PSCO) and
in the large cavity (Pl/PSCO) on the radius of the small cavity
Rs for different Rl, where N = 60. We can see that Pl is al-
ways larger than Ps for any given Rs and Rl (Rs < Rl), meaning
that the polymer prefers occupying the large cavity to maxi-
mize the conformational entropy in the SCO phase. However,
at Rs = Rl (the symmetric twin-cavity case), Ps is nearly equal
to Pl, and then Ps/PSCO = Pl/PSCO = 0.5, i.e., the whole poly-
mer in the small cavity and in the large cavity with the same
probability.
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Fig. 5. The relative probabilities of the whole polymer in the small cavity
(Ps/PSCO) and in the large cavity (Pl/PSCO) in the SCO phase as functions
of the radius of the small cavity Rs for different Rl, where N = 60.

In the DCO phase, both the two cavities are occupied by
the polymer. Figure 6 shows the dependence of the equilib-
rium number (ms) of monomers in the small cavity on Rs for
different Rl (< RC), where N = 60. Based on the critical ra-
dius RsC, two different regions are found. When Rs < RsC, ms

is nearly to be zero, i.e., the whole polymer is in the large cav-
ity. While when Rs > RsC, ms increases monotonously with
increasing Rs and reaches N/2 at Rs = Rl, i.e., the polymer
splits its segments between the two cavities. For any given Rs

(> RsC), ms increases monotonously with decreasing Rl, be-
cause the confinement effect of the large sphere on the poly-
mer is stronger and stronger with decreasing Rl, as shown in
Fig. 6.
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Fig. 6. The equilibrium number (ms) of monomers in the small cavity
as a function of Rs for different Rl (< RC), where N = 60. The inset
shows ms/N as a function of (Rl/Rs)

3 for different Rl and N. The solid
red line is given by Eq. (12).

In their experiment work, Nykypanchuk et al have study
the partitioning of fluorescently labeled a single DNA chain
with different length within two interconnected spherical cav-
ities with different size.[48] For the case Rg0 is bigger than
the radius (R) of the equal-sized cavities (strong confinement
case), the DNA chain prefers to adopt bridging configuration
with equal subchain length in the two cavities, i.e., the DNA
chain is in the DCO phase, which is in good agreement with
the simulation results shown in the inset of Fig. 2 and Fig. 6.

108201-4



Chin. Phys. B Vol. 29, No. 10 (2020) 108201

While for the case Rg0 is much less than Rl or Rs (weak and
moderate confinement case), it was found that the probabil-
ity for DNA bridging the two cavities is very small, and the
whole DNA is confined in one of the two cavities, i.e. the DNA
chain is in the SCO phase, which is in good agreement with the
phase diagram shown in Fig. 4. Moreover, it was found that
the time for DNA spent in the large cavity is longer than that
in the small cavity, i.e., the probability of the whole DNA in
the large cavity is bigger than that in the small cavity, which is
also in agreement with the simulation results shown in Fig. 5.

The scaling relation of RC on N and that of RsC on Rl and
N can be understood by using the blob picture. For a polymer
chain confined in a small spherical cavity, the polymer can
be envisioned as a compact stacking of blobs of size ξ in the
sphere. In each blob, the confinement effect of the cavity can
be neglected, and the internal correlations between monomers
are the same as those in the bulk. The blob size ξ is depen-
dent on the polymer length N and the diameter of the spherical
cavity D, i.e., ξ decreases with increasing N or decreasing D,
which can be specifically expressed as[52]

ξ ∼
(

D3

N

)ν/(3ν−1)

(3)

with ν (= 3/5) the Flory exponent for a three-dimensional
self-avoiding polymer chain. The number of blobs (nb) in the
cavity can then be written as nb ∼ D3/ξ 3.[52] Based on the
blob theory, the blob is the basic element of the free energy of
the polymer, and the free energy F (in unit of kBT ) is propor-
tional to the number of blobs, i.e.,[52]

F ∼ D3

ξ 3 . (4)

Assuming there are m monomers in the small cavity and
N–m monomers in the large cavity, the polymer can be viewed
as two tethered chains, and the free energy (F) of the polymer
can then be written as

F ∼ R3
s

ξ 3
s
+

R3
l

ξ 3
l
. (5)

Here, ξs ∼ R3ν/(3ν−1)
s mν/(1−3ν) and ξl ∼ R3ν/(3ν−1)

l (N −
m)ν/(1−3ν) represent the blob size in the small cavity and the
large cavity, respectively. For given Rs, Rl, and N, the relation
between ξs and ξ l at the thermal equilibrium state is deter-
mined by

dF/dξs = 0. (6)

This leads to

R3
s

ξ 4
s
+

R3
l

ξ 4
l

dξl

dξs
= 0. (7)

From the expressions of ξs and ξl, we can also obtain N ∼
R3

s/ξ
3−1/ν
s +R3

l /ξ
3−1/ν

l , i.e.,

ξl = R3ν/(3ν−1)
l

(
N− R3

s

ξ
3−1/ν
s

)ν/(1−3ν)

. (8)

We then get

dξl

dξs
=−R3

s

R3
l

ξ
4−1/ν

l

ξ
4−1/ν
s

. (9)

Substituting Eq. (9) into Eq. (7), we can then obtain

ξs = ξl, (10)

i.e., the size of the blob in the small cavity is the same as that
in the large cavity at the thermal equilibrium state, which can
be used as a criterion to judge whether the polymer is at the
equilibrium state or not.

Based on this criterion, we can then define a critical ra-
dius of the small cavity RsC, where the size of the small cavity
is just equal to the blob size when the whole polymer is in the
large cavity, i.e.,

RsC∼
(

R3
l

N

)ν/(3ν−1)

. (11)

Obviously, ξs = ξl can only occur when Rs > RsC, i.e., the
polymer is in the DCO phase when Rs > RsC. When Rs < RsC,
it is difficult for polymer to enter into the small cavity, i.e.,
the whole polymer is in the large cavity and the polymer is in
the SCO phase. Substituting the Flory exponent ν = 3/5 into
Eq. (11), we can then get RsC ∼ R9/4

l N−3/4, which are in good
agreement with the simulation results, as shown in the inset of
Fig. 4. Moreover, substituting ξs ∼ R3ν/(3ν−1)

s mν/(1−3ν) and
ξl ∼ R3ν/(3ν−1)

l (N−m)ν/(1−3ν) into Eq. (10), we can obtain
the dependence of the equilibrium number of monomers (ms)
in the small cavity in the DCO phase on Rs, Rl, and N, i.e.,

ms =
N

(R3
l /R3

s +1)
, (12)

which is also in good agreement with the simulation results
when ms� 0, as shown with the solid red line in the inset of
Fig. 5. When ms→ 0, the polymer is out of the DCO phase, so
the dependence of ms on Rs, Rl, and N deviates from Eq. (12)
gradually, as shown in the inset of Fig. 5.

For the symmetric twin-cavity system (Rs = Rl = R), we
can obtain the relation between the critical radius RC and the
polymer length N from Eq. (11), i.e., RC∼Nν , which is in good
agreement with the simulation result, as shown in the inset of
Fig. 2. Meanwhile, we can get ms = N/2 or ms/N = 0.5 from
Eq. (12), i.e., each of the two cavities accommodates half num-
ber of monomers, which is also in good agreement with the
simulation result, as shown in Fig. 6.
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4. Conclusion
In this work, the equilibrium distribution of a polymer

chain between two interconnected spherical cavities (a small
one with radius Rs and a large one with radius Rl) is studied
by using Monte Carlo simulation. A continuous phase transi-
tion from a double-cavity-occupation (DCO) state to a single-
cavity-occupation (SCO) state is observed with increasing the
size of the two cavities. For the symmetric twin-cavity system
(Rs =Rl =R), the dependence of the critical cavity radius (RC)
where the transition occurs on the polymer length (N) can be
expressed as RC ∝ Nν with the ν being the Flory exponent.
For the asymmetric system, the dependence of the critical ra-
dius of the small cavity (RsC) on Rl and N can be described
by RsC ∝ N1/3R1−1/3ν

l , and meanwhile the equilibrium num-
ber (ms) of monomers in the small cavity for the DCO phase
can be expressed as ms = N/((Rl/Rs)

3 + 1). By theoretical
analysis based on the blob picture, it is found that the phase
transitions are determined by the blob size of polymer in the
small sphere and the large sphere, respectively. Our results
maybe helpful for understanding the injection of DNA into a
bacteria cell from a virus capsid.
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