• Laser & Optoelectronics Progress
  • Vol. 56, Issue 24, 240002 (2019)
Yun Fu*, Tianle Wang, and Sen Zhao
Author Affiliations
  • School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/LOP56.240002 Cite this Article Set citation alerts
    Yun Fu, Tianle Wang, Sen Zhao. Imaging Principles and Applications of Super-Resolution Optical Microscopy[J]. Laser & Optoelectronics Progress, 2019, 56(24): 240002 Copy Citation Text show less
    References

    [1] Hell S W, Sahl S J, Bates M et al. The 2015 super-resolution microscopy roadmap[J]. Journal of Physics D: Applied Physics, 48, 443001(2015).

    [2] Chi K R. Super-resolution microscopy: breaking the limits[J]. Nature Methods, 6, 15-18(2009).

    [3] Ji W, Xu T, Liu B. Super-resolution fluorescent microscopy: a brief introduction to the Nobel Prize in Chemistry 2014[J]. Chinese Journal of Nature, 36, 404-408(2014).

    [4] Qin P W, Parlak M, Kuscu C et al. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9[J]. Nature Communications, 8, 14725(2017).

    [5] Samanta S, Gong W J, Li W et al. Organic fluorescent probes for stochastic optical reconstruction microscopy (STORM): recent highlights and future possibilities[J]. Coordination Chemistry Reviews, 380, 17-34(2019).

    [6] Almada P, Culley S, Henriques R. PALM and STORM: into large fields and high-throughput microscopy with sCMOS detectors[J]. Methods, 88, 109-121(2015).

    [7] Bernhem K, Blom H, Brismar H. Quantification of endogenous and exogenous protein expressions of Na, K-ATPase with super-resolution PALM/STORM imaging[J]. PLoS One, 13, e0195825(2018).

    [8] Tam J, Merino D. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods[J]. Journal of Neurochemistry, 135, 643-658(2015). http://www.ncbi.nlm.nih.gov/pubmed/26222552

    [9] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [10] Hess S T. Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 91, 4258-4272(2006).

    [11] Rust M J, Bates M, Zhuang X W. Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution[J]. Nature Methods, 3, 793-795(2006). http://www.nature.com/doifinder/10.1038/nmeth929

    [12] Dempsey G T, Vaughan J C, Chen K H et al. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging[J]. Nature Methods, 8, 1027-1036(2011). http://www.nature.com/nmeth/journal/v8/n12/abs/nmeth.1768.html

    [13] Huang B, Bates M, Zhuang X W. Super-resolution fluorescence microscopy[J]. Annual Review of Biochemistry, 78, 993-1016(2009).

    [14] Sydor A M, Czymmek K J, Puchner E M et al. Super-resolution microscopy: from single molecules to supramolecular assemblies[J]. Trends in Cell Biology, 25, 730-748(2015).

    [15] Chéreau R, Tønnesen J, Nägerl U V. STED microscopy for nanoscale imaging in living brain slices[J]. Methods, 88, 57-66(2015).

    [16] Vicidomini G, Bianchini P, Diaspro A. STED super-resolved microscopy[J]. Nature Methods, 15, 173-182(2018).

    [17] Yu W T, Ji Z H, Dong D S et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser & Photonics Reviews, 10, 147-152(2016).

    [18] Vicidomini G, Moneron G, Han K Y et al. Sharper low-power STED nanoscopy by time gating[J]. Nature Methods, 8, 571-573(2011). http://www.ncbi.nlm.nih.gov/pubmed/21642963

    [19] Chen J L, Qiu C M, You M H et al. Structured illumination microscopy and its new developments[J]. Journal of Innovative Optical Health Sciences, 9, 1630010(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJ181227000054eLhNkQ

    [20] Curd A, Cleasby A, Makowska K et al. Construction of an instant structured illumination microscope[J]. Methods, 88, 37-47(2015).

    [21] Heintzmann R, Huser T. Super-resolution structured illumination microscopy[J]. Chemical Reviews, 117, 13890-13908(2017).

    [22] Saxena M, Eluru G, Gorthi S S. Structured illumination microscopy[J]. Advances in Optics and Photonics, 7, 241-275(2015).

    [23] Huang Y J, Zhu D Z, Jin L H et al. Laser scanning saturated structured illumination microscopy based on phase modulation[J]. Optics Communications, 396, 261-266(2017). http://www.sciencedirect.com/science/article/pii/S0030401817301839

    [24] Wei F F, Ponsetto J L, Liu Z W[M]. Plasmonic structured illumination microscopy, 127-163(2017).

    [25] Li D, Shao L, Chen B C, cytoskeletal dynamics[J]. Science et al. 349(6251): aab3500(2015).

    [26] Chmyrov A, Keller J, Grotjohann T et al. Nanoscopy with more than 100, 000 ‘doughnuts’[J]. Nature Methods, 10, 737-740(2013).

    [27] Hell S W, Dyba M, Jakobs S. Concepts for nanoscale resolution in fluorescence microscopy[J]. Current Opinion in Neurobiology, 14, 599-609(2004).

    [28] Schnitzbauer J, Strauss M T, Schlichthaerle T et al. Super-resolution microscopy with DNA-PAINT[J]. Nature Protocols, 12, 1198-1228(2017). http://www.ncbi.nlm.nih.gov/pubmed/28518172

    [29] Dertinger T, Colyer R, Vogel R et al. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI)[J]. Optics Express, 18, 18875-18885(2010). http://www.ncbi.nlm.nih.gov/pubmed/20940780

    [30] Zeng Z P. Fluorescence fluctuation-based super-resolution nanoscopy[J]. Chinese Journal of Lasers, 45, 0307009(2018).

    [31] Shroff H, Galbraith C G, Galbraith J A et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes[J]. Proceedings of the National Academy of Sciences, 104, 20308-20313(2007).

    [32] Bates M, Dempsey G T, Chen K H et al. Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection[J]. ChemPhysChem, 13, 99-107(2012). http://www.tandfonline.com/servlet/linkout?suffix=cit0054&dbid=8&doi=10.1080%2F05704928.2017.1323309&key=22213647

    [33] Bintu B, Mateo L J, Su J H et al. 362(6413): eaau1783[J]. cooperative interactions in single cells. Science(2018).

    [34] Xu J Q, Tehrani K F, Kner P. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy[J]. ACS Nano, 9, 2917-2925(2015).

    [35] Göttfert F, Pleiner T, Heine J et al. Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent[J]. Proceedings of the National Academy of Sciences, 114, 2125-2130(2017).

    [36] Oracz J, Westphal V, Radzewicz C et al. Photobleaching in STED nanoscopy and its dependence on the photon flux applied for reversible silencing of the fluorophore[J]. Scientific Reports, 7, 11354(2017). http://europepmc.org/abstract/MED/28900102

    [37] Jungmann R, Avendaño M S, Woehrstein J B et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT[J]. Nature Methods, 11, 313-318(2014). http://europepmc.org/articles/pmc4153392/

    [38] Legant W R, Shao L, Grimm J B et al. High-density three-dimensional localization microscopy across large volumes[J]. Nature Methods, 13, 359-365(2016).

    [39] Wang Y L, Kanchanawong P[J]. Three-dimensional super resolution microscopy of F-actin filaments by interferometric photoactivated localization microscopy (iPALM) Journal of Visualized Experiments, 2016, e54774.

    [40] Buss J, Coltharp C, Shtengel G et al. A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics[J]. PLoS Genetics, 11, e1005128(2015).

    [41] Kraus F, Miron E, Demmerle J et al. Quantitative 3D structured illumination microscopy of nuclear structures[J]. Nature Protocols, 12, 1011-1028(2017).

    [42] Hell S. Stelzer E H K. Properties of a 4Pi confocal fluorescence microscope[J]. Journal of the Optical Society of America A, 9, 2159-2166(1992).

    [43] Huang F, Sirinakis G, Allgeyer E S et al. Ultra-high resolution 3D imaging of whole cells[J]. Cell, 166, 1028-1040(2016).

    [44] von Diezmann A, Shechtman Y, Moerner W E. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking[J]. Chemical Reviews, 117, 7244-7275(2017).

    [45] Holtzer L, Meckel T, Schmidt T. Nanometric three-dimensional tracking of individual quantum dots in cells[J]. Applied Physics Letters, 90, 053902(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4827985

    [46] Jones S A, Shim S H, He J et al. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 8, 499-505(2011). http://www.ncbi.nlm.nih.gov/pubmed/21552254

    [47] Xu J Q, Ma H Q. 81(1): 12. 46.1-12., 46, 27(2017).

    [48] Pavani S R P, Thompson M A, Biteen J S et al. . Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences, 106, 2995-2999(2009).

    [49] Jia S, Vaughan J C, Zhuang X W. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function[J]. Nature Photonics, 8, 302-306(2014). http://europepmc.org/abstract/med/25383090

    [50] Baddeley D, Cannell M B, Soeller C. Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil[J]. Nano Research, 4, 589-598(2011). http://link.springer.com/article/10.1007/s12274-011-0115-z

    [51] Veeraraghavan R, Gourdie R G. Stochastic optical reconstruction microscopy-based relative localization analysis (STORM-RLA) for quantitative nanoscale assessment of spatial protein organization[J]. Molecular Biology of the Cell, 27, 3583-3590(2016). http://europepmc.org/abstract/MED/27307586

    [52] Abrahamsson S, Chen J J, Hajj B et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy[J]. Nature Methods, 10, 60-63(2013). http://europepmc.org/abstract/MED/23223154

    [53] Hajj B, Wisniewski J. ElBeheiry M, et al. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy[J]. Proceedings of the National Academy of Sciences, 111, 17480-17485(2014). http://europepmc.org/articles/PMC4267334/

    [54] Vangindertael J, Beets I, Rocha S et al. Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM[J]. Scientific Reports, 5, 13532(2015).

    [55] Xie X L, Chen R, Zhao Y X et al. Combination light-sheet illumination with super-resolution three-dimensional fluorescence microimaging[J]. Chinese Journal of Lasers, 45, 0307006(2018).

    [56] Patton B R, Burke D, Owald D et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics[J]. Optics Express, 24, 8862-8876(2016).

    [57] Gustavsson A K, Petrov P N, Lee M Y et al. 3D single-molecule super-resolution microscopy with a tilted light sheet[J]. Nature Communications, 9, 123(2018).

    [58] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018).

    [59] Nienhaus K, Nienhaus G U. Where do we stand with super-resolution optical microscopy?[J]. Journal of Molecular Biology, 428, 308-322(2016). http://www.sciencedirect.com/science/article/pii/S0022283615007111

    [60] Wegner W, Ilgen P, Gregor C et al. In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins[J]. Scientific Reports, 7, 11781(2017).

    [61] D'Este E. Kamin D, Balzarotti F, et al. Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy[J]. Proceedings of the National Academy of Sciences, 114, E191-E199(2017).

    [62] Boettiger A N, Bintu B, Moffitt J R et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states[J]. Nature, 529, 418-422(2016).

    [63] Lubeck E, Cai L. Single-cell systems biology by super-resolution imaging and combinatorial labeling[J]. Nature Methods, 9, 743-748(2012). http://www.ncbi.nlm.nih.gov/pubmed/22660740

    [64] Morozova K S, Piatkevich K D, Gould T J et al. Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy[J]. Biophysical Journal, 99, L13-L15(2010). http://www.ncbi.nlm.nih.gov/pubmed/20643047

    [65] Lukinavi ius G, Umezawa K, Olivier N et al. . A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins[J]. Nature Chemistry, 5, 132-139(2013).

    [66] Plass T, Schraidt O et al. . Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy[J]. Angewandte Chemie International Edition, 53, 2245-2249(2014).

    [67] Godin A G, Lounis B, Cognet L. Super-resolution microscopy approaches for live cell imaging[J]. Biophysical Journal, 107, 1777-1784(2014). http://europepmc.org/abstract/med/25418158

    [68] Jans D C, Wurm C A, Riedel D et al. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria[J]. Proceedings of the National Academy of Sciences, 110, 8936-8941(2013).

    [69] Westphal V. Lauterbach A,di Nicola A, et al. Dynamic far-field fluorescence nanoscopy[J]. New Journal of Physics, 9, 435(2007).

    [70] Bowler M, Kong D, Sun S F et al. High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy[J]. Nature Communications, 10, 993(2019).

    [71] Deng Y Y. Fluorescence super resolution microscopic imaging for the study of oocyte meiosis[D]. Shenzhen: Shenzhen University(2017).

    [72] Hanne J, Falk H J, Görlitz F et al. STED nanoscopy with fluorescent quantum dots[J]. Nature Communications, 6, 7127(2015).

    [73] Honigmann A, Mueller V, Ta H S et al. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells[J]. Nature Communications, 5, 5412(2014). http://europepmc.org/abstract/med/25410140

    [74] Dudok B, Barna L, Ledri M et al. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling[J]. Nature Neuroscience, 18, 75-86(2015).

    [75] Jacq M, Adam V, Bourgeois D et al. Remodeling of the Z-ring nanostructure during the Streptococcus pneumoniae cell cycle revealed by photoactivated localization microscopy[J]. mBio, 6, e01108-15(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4542196/

    [76] Laplante C, Huang F, Tebbs I R et al. Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast[J]. Proceedings of the National Academy of Sciences, 113, E5876-E5885(2016).

    [77] Holden S. Probing the mechanistic principles of bacterial cell division with super-resolution microscopy[J]. Current Opinion in Microbiology, 43, 84-91(2018). http://europepmc.org/abstract/MED/29324330

    [78] Holden S J, Pengo T, Meibom K L et al. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization[J]. Proceedings of the National Academy of Sciences, 111, 4566-4571(2014).

    [79] Strauss M P. Liew A T F, Turnbull L, et al. 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis[J]. PLoS Biology, 10, e1001389(2012).

    [80] Chen M H, Liu S Y, Li W et al. Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes[J]. ACS Nano, 10, 8482-8490(2016).

    [81] Wang W, Li G W, Chen C et al. Chromosome organization by a nucleoid-associated protein in live bacteria[J]. Science, 333, 1445-1449(2011). http://europepmc.org/articles/PMC3329943

    [82] Xia Y, Fu B M. Investigation of endothelial surface glycocalyx components and ultrastructure by single molecule localization microscopy: stochastic optical reconstruction microscopy (STORM)[J]. The Yale Journal of Biology and Medicine, 91, 257-266(2018).

    [83] Wegel E, Göhler A, Lagerholm B C et al. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: a practical comparison[J]. Scientific Reports, 6, 27290(2016).

    [84] Butkevich A N, Mitronova G Y, Sidenstein S C et al. Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells[J]. Angewandte Chemie International Edition, 55, 3290-3294(2016).

    [85] Xu K, Babcock H P, Zhuang X W. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton[J]. Nature Methods, 9, 185-188(2012).

    [86] Suleiman H Y, Roth R, Jain S et al. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy[J]. JCI Insight, 2, e94137(2017). http://europepmc.org/abstract/MED/28814668

    [87] Unsain N, Bordenave M D, Martinez G F et al. Author correction: remodeling of the actin/spectrin membrane-associated periodic skeleton, growth cone collapse and F-actin decrease during axonal degeneration[J]. Scientific Reports, 8, 3007(2018).

    [88] Han B R, Zhou R B, Xia C L et al. Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons[J]. Proceedings of the National Academy of Sciences, 114, E6678-E6685(2017). http://www.ncbi.nlm.nih.gov/pubmed/28739933

    [89] Pan L T, Yan R, Li W et al. Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton[J]. Cell Reports, 22, 1151-1158(2018).

    [90] Unsain N, Stefani F D, Cáceres A. The actin/spectrin membrane-associated periodic skeleton in neurons[J]. Frontiers in Synaptic Neuroscience, 10, 10(2018).

    [91] Wen G, Li S M, Yang X B et al. Super-resolution fluorescence microscopy system by structured light illumination based on laser interference[J]. Acta Optica Sinica, 37, 0318003(2017).

    [92] Yuan S Y. STORM super resolution imaging of cytoskeleton[D]. Shenzhen: Shenzhen University(2017).

    [93] D'Este E. Kamin D, Göttfert F, et al. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons[J]. Cell Reports, 10, 1246-1251(2015).

    Yun Fu, Tianle Wang, Sen Zhao. Imaging Principles and Applications of Super-Resolution Optical Microscopy[J]. Laser & Optoelectronics Progress, 2019, 56(24): 240002
    Download Citation