• Journal of Semiconductors
  • Vol. 40, Issue 6, 061001 (2019)
Ziqi Zhou1、2, Yu Cui1、2, Ping-Heng Tan1、2, Xuelu Liu1、2, and Zhongming Wei1、2
Author Affiliations
  • 1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/40/6/061001 Cite this Article
    Ziqi Zhou, Yu Cui, Ping-Heng Tan, Xuelu Liu, Zhongming Wei. Optical and electrical properties of two-dimensional anisotropic materials[J]. Journal of Semiconductors, 2019, 40(6): 061001 Copy Citation Text show less
    References

    [1] J Shang, L Huang, Z Wei. Effects of vertical electric field and compressive strain on electronic properties of bilayer ZrS2. J Semicond, 38, 033001(2017).

    [2] C Fan, Y Li, F Lu et al. Wavelength dependent UV–vis photodetectors from SnS2 flakes. RSC Adv, 6, 422(2016).

    [3] Z Wei, B Li, C Xia et al. Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods, 2, 1800094(2018).

    [4] X Wang, Y Cui, T Li et al. Recent advances in the functional 2D photonic and optoelectronic devices. Adv Opt Mater, 1801274(2018).

    [5] Y Wang, L H Huang, B Li et al. Composition-tunable 2D SnSe2(1−x)S2x alloys towards efficient bandgap engineering and high performance (opto)electronics. J Mater Chem C, 5, 84(2017).

    [6] T Mueller, F Xia, P Avouris. Graphene photodetectors for high-speed optical communications. Nat Photon, 4, 297(2010).

    [7] K S Novoselov, A K Geim, S V Morozov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197(2005).

    [8] L Huang, L Tao, K Gong et al. Role of defects in enhanced Fermi level pinning at interfaces between metals and transition metal dichalcogenides. Phys Rev B, 96, 205303(2017).

    [9] V Podzorov, M Gershenson, C Zeis et al. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl Phys Lett, 84, 3301-3303(2004).

    [10] C Xia, J Li. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J Semicond, 37, 051001(2016).

    [11] N Huo, Y Yang, J Li. Optoelectronics based on 2D TMDs and heterostructures. J Semicond, 38, 031002(2017).

    [12] Q H Tan, X Zhang, X D Luo et al. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings. J Semicond, 38, 031006(2017).

    [13] Z Lou, Z Liang, G Shen. Photodetectors based on two dimensional materials. J Semicond, 37, 091001(2016).

    [14] M Amani, E Regan, J Bullock et al. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano, 11, 11724(2017).

    [15] M Amani, C Tan, G Zhang et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano, 12, 7253(2018).

    [16] F Chu, M Chen, Y Wang et al. A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy. J Mater Chem C, 6, 2509(2018).

    [17] T Hong, B Chamlagain, W Lin et al. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale, 6, 8978(2014).

    [18] N Huo, S Yang, Z Wei et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS(2) nanoflakes. Sci Rep, 4, 5209(2014).

    [19] J Lai, X Liu, J Ma et al. Anisotropic broadband photoresponse of layered type-II Weyl semimetal MoTe2. Adv Mater, 30, e1707152(2018).

    [20] Y Li, Y Wang, L Huang et al. Anti-ambipolar field-effect transistors based on few-layer 2D transition metal dichalcogenides. ACS Appl Mater Interfaces, 8, 15574(2016).

    [21] Y Wang, L Huang, Z Wei. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J Semicond, 38, 034001(2017).

    [22] T Cao, Z Li, D Y Qiu et al. Gate switchable transport and optical anisotropy in 90 degrees twisted bilayer black phosphorus. Nano Lett, 16, 5542(2016).

    [23] B Liu, M Kopf, A N Abbas et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv Mater, 27, 4423(2015).

    [24] M Zhong, X Wang, S Liu et al. High-performance photodetectors based on Sb2S3 nanowires: wavelength dependence and wide temperature range utilization. Nanoscale, 9, 12364(2017).

    [25] L Ye, P Wang, W Luo et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy, 37, 53(2017).

    [26] M Zhong, K Zhou, Z Wei et al. Highly anisotropic solar-blind UV photodetector based on large-size two-dimensional α-MoO3 atomic crystals. 2D Mater, 5, 035033(2018).

    [27] J B Li, X R Wang. Preface to the special topic on 2D materials and devices. J Semicond, 38, 031001(2017).

    [28] Z Hu, Q Li, B Lei et al. Abnormal near-infrared absorption in 2D black phosphorus induced by Ag nanoclusters surface functionalization. Adv Mater, 1801931(2018).

    [29] T Lin, X Cong, M L Lin et al. The phonon confinement effect in two-dimensional nanocrystals of black phosphorus with anisotropic phonon dispersions. Nanoscale, 10, 8704(2018).

    [30] C Barreteau, B Michon, C Besnard et al. High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors. J Cryst Growth, 443, 75(2016).

    [31] L Li, W Wang, P Gong et al. 2D GeP: An unexploited low-symmetry semiconductor with strong In-plane anisotropy. Adv Mater, 30, e1706771(2018).

    [32] B Mortazavi, T Rabczuk. Anisotropic mechanical properties and strain tuneable band-gap in single-layer SiP, SiAs, GeP and GeAs. Physica E, 103, 273(2018).

    [33] C Li, S Wang, C Li et al. Highly sensitive detection of polarized light using a new group IV–V 2D orthorhombic SiP. J Mater Chem C, 6, 7219(2018).

    [34] X Wang, A Jones, K Seyler et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat Nanotechnol, 10, 517(2015).

    [35] Y Chen, C Chen, R Kealhofer et al. Black arsenic: a layered semiconductor with extreme in-plane anisotropy. Adv Mater, 30, 1800754(2018).

    [36] M Zhong, Q Xia, L Pan et al. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: black arsenic. Adv Funct.Mater, 28, 1802581(2018).

    [37] J A Silva-Guillén, E Canadell, P Ordejón et al. Anisotropic features in the electronic structure of the two-dimensional transition metal trichalcogenide TiS3: electron doping and plasmons. 2D Mater, 4, 025085(2017).

    [38] H Yuan, X Liu, F Afshinmanesh et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat Nanotechnol, 10, 707(2015).

    [39] M Long, A Gao, P Wang et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci Adv, 3, e1700589(2017).

    [40] Z Zhou, M Long, L Pan et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano(2018).

    [41] X Wang, Y Li, L Huang et al. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J Am Chem Soc, 139, 14976(2017).

    [42] Y C Lin, H P Komsa, C H Yeh et al. Single-layer ReS(2): two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano, 9, 11249(2015).

    [43] E Zhang, Y Jin, X Yuan et al. ReS2-based field-effect transistors and photodetectors. Adv Funt Mater, 25, 4076(2015).

    [44] E Zhang, P Wang, Z Li et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano, 10, 8067(2016).

    [45] N Tian, Y Yang, D Liu et al. High anisotropy in tubular layered exfoliated KP15. ACS Nano, 12, 1712(2018).

    [46] L Li, Y Yu, GJ Ye et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 9, 372(2014).

    [47] J Guo, Y Liu, Y Ma et al. Few-layer GeAs field-effect transistors and infrared photodetectors. Adv Mater, 30, 1705934(2018).

    [48] Y Niu, R Frisenda, E Flores et al. Polarization-sensitive and broadband photodetection based on a mixed-dimensionality TiS3/Si p–n junction. Adv Optical Mater, 6, 1800351(2018).

    [49] W Wen, Y Zhu, X Liu et al. Anisotropic spectroscopy and electrical properties of 2D ReS2(1–x)Se2x. alloys with distorted 1T structure. Small, 13, 1603788(2017).

    [50] J W Rau, C R Kannewurf. Optical absorption, reflectivity, and electrical conductivity in GeAs and GeAs2. Phys Rev B, 3, 2581(1971).

    [51] P Wang, S Liu, W Luo et al. Arrayed Van Der Waals broadband detectors for dual-band detection. Adv Mater, 29(2017).

    [52] S Liu, W Xiao, M Zhong et al. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology, 29, 184002(2018).

    [53] M Rahman, K Davey, S Z Qiao. Advent of 2D rhenium disulfide (ReS2): fundamentals to applications. Adv Funct Mater, 27, 1606129(2017).

    [54] B Kang, Y Kim, JH Cho et al. Ambipolar transport based on CVD-synthesized ReSe2. 2D Mater, 4, 025014(2017).

    [55] X Zhang, Q H Tan, J B Wu et al. Review on the Raman spectroscopy of different types of layered materials. Nanoscale, 8, 6435(2016).

    [56] G Yang, W Zhang. Renaissance of pyridine-oxazolines as chiral ligands for asymmetric catalysis. Chem Soc Rev, 47, 1783(2018).

    [57] J B Wu, H Zhao, Y Li et al. Monolayer molybdenum disulfide nanoribbons with high optical anisotropy. Adv Opt Mater, 4, 756(2016).

    [58] J B Wu, M L Lin, X Cong et al. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev, 47, 1822(2018).

    [59] L Liang, J Zhang, B G Sumpter et al. Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials. ACS Nano, 11, 11777(2017).

    [60] H Zhao, J Wu, H Zhong et al. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res, 8, 3651(2015).

    [61] H B Ribeiro, M A Pimenta, C J S de Matos. Raman spectroscopy in black phosphorus. J Raman Spectrosc, 49, 76(2018).

    [62] X L Liu, X Zhang, M L Lin et al. Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials. Chin Phys B, 26, 067802(2017).

    [63] K Lee, S Kamali, T Ericsson et al. GeAs: Highly anisotropic van der Waals thermoelectric material. Chem Mater, 28, 2776(2016).

    [64] L Zhou, Y Guo, J Zhao. GeAs and SiAs monolayers: novel 2D semiconductors with suitable band structures. Phys E, 95, 149(2018).

    [65] Q Song, H Wang, X Pan et al. Anomalous in-plane anisotropic Raman response of monoclinic semimetal 1 T -MoTe2. Sci Rep, 7, 1758(2017).

    [66] Q Song, H Wang, X Xu et al. The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths. RSC Adv, 6, 103830(2016).

    [67] X Xu, Q Song, H Wang et al. In-plane anisotropies of polarized raman response and electrical conductivity in layered tin selenide. ACS Appl Mater Interfaces, 9, 12601(2017).

    [68] X Liu, C R Ryder, S A Wells et al. Resolving the in-plane anisotropic properties of black phosphorus. Small Methods, 1, 1700143(2017).

    [69] P Venuthurumilli, P Ye, X Xu. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano, 12, 4861(2018).

    [70] C Niu, P M Buhl, G Bihlmayer et al. Two-dimensional topological crystalline insulator and topological phase transition in TlSe and TlS monolayers. Nano Lett, 15, 6071(2015).

    [71] J Lai, Y Liu, J Ma et al. Broadband anisotropic photoresponse of the "hydrogen atom" version type-II Weyl semimetal candidate TaIrTe4. ACS Nano, 12, 4055(2018).

    [72] J Jiang, Z K Liu, Y Sun et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat Commun, 8, 13973(2017).

    [73] W Zhou, J Chen, H Gao et al. Anomalous and polarization-sensitive photoresponse of Td–WTe2 from visible to infrared light. Adv Mater, 31, e1804629(2019).

    [74] F Xia, H Wang, Y Jia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 5, 4458(2014).

    [75] F Cui, Q Feng, J Hong et al. Synthesis of large-size 1T' ReS2xSe2(1–x) alloy monolayer with tunable bandgap and carrier type. Adv Mater, 29, 1705015(2017).

    [76] X Meng, Y Zhou, K Chen et al. Anisotropic saturable and excited-state absorption in bulk ReS2. Adv Opt Mater, 6, 1800137(2018).

    [77] H Zheng, M Zhu, J Zhang et al. A first-principles study on the magnetic properties of Sc, V, Cr and Mn-doped monolayer TiS3. RSC Adv, 6, 55194(2016).

    [78] L Li, P Gong, W Wang et al. Strong in-plane anisotropies of optical and electrical response in layered dimetal chalcogenide. ACS Nano, 11, 10264(2017).

    Ziqi Zhou, Yu Cui, Ping-Heng Tan, Xuelu Liu, Zhongming Wei. Optical and electrical properties of two-dimensional anisotropic materials[J]. Journal of Semiconductors, 2019, 40(6): 061001
    Download Citation