• Journal of Semiconductors
  • Vol. 44, Issue 6, 062801 (2023)
Wenbo Tang1,2, Xueli Han3,4, Xiaodong Zhang1,2, Botong Li1,2..., Yongjian Ma1,2, Li Zhang2, Tiwei Chen1,2, Xin Zhou2, Chunxu Bian2, Yu Hu1,2, Duanyang Chen3, Hongji Qi3,4,*, Zhongming Zeng1,2 and Baoshun Zhang1,2,**|Show fewer author(s)
Author Affiliations
  • 1School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
  • 2Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • 3Research Center of Laser Crystal, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4Hangzhou Institute of Optics and Fine Mechanics, Hangzhou 311421, China
  • show less
    DOI: 10.1088/1674-4926/44/6/062801 Cite this Article
    Wenbo Tang, Xueli Han, Xiaodong Zhang, Botong Li, Yongjian Ma, Li Zhang, Tiwei Chen, Xin Zhou, Chunxu Bian, Yu Hu, Duanyang Chen, Hongji Qi, Zhongming Zeng, Baoshun Zhang. Homoepitaxial growth of (100) Si-doped β-Ga2O3 films via MOCVD[J]. Journal of Semiconductors, 2023, 44(6): 062801 Copy Citation Text show less
    References

    [1] G Wagner, M Baldini, D Gogova et al. Homoepitaxial growth of β-Ga2O3 layers by metal-organic vapor phase epitaxy. Phys Status Solidi A, 211, 27(2014).

    [2] M Higashiwaki, K Sasaki, A Kuramata et al. Development of gallium oxide power devices. Phys Status Solidi A, 211, 21(2014).

    [3] S Rafique, M R Karim, J M Johnson et al. LPCVD homoepitaxy of Si doped β-Ga2O3 thin films on (010) and (001) substrates. Appl Phys Lett, 112, 052104(2018).

    [4] W B Tang, X D Zhang, T He et al. Temperature-dependent electrical characteristics of β-Ga2O3 trench Schottky barrier diodes via self-reactive etching. J Phys D, 54, 425104(2021).

    [5] Q M He, W B Hao, X Z Zhou et al. Over 1 GW/cm2 vertical Ga2O3 Schottky barrier diodes without edge termination. IEEE Electron Device Lett, 43, 264(2022).

    [6] C H Lin, Y Yuda, M H Wong et al. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation. IEEE Electron Device Lett, 40, 1487(2019).

    [7] Y B Wang, W H Xu, G Q Han et al. Channel properties of Ga2O3-on-SiC MOSFETs. IEEE Trans Electron Devices, 68, 1185(2021).

    [8] K Zeng, R Soman, Z L Bian et al. Vertical Ga2O3 MOSFET with magnesium diffused current blocking layer. IEEE Electron Device Lett, 43, 1527(2022).

    [9] H C Huang, Z J Ren, A F M Anhar Uddin Bhuiyan et al. β-Ga2O3 FinFETs with ultra-low hysteresis by plasma-free metal-assisted chemical etching. Appl Phys Lett, 121, 052102(2022).

    [10] Z Y Hu, K Nomoto, W S Li et al. 1.6 kV vertical Ga2O3 FinFETs with source-connected field plates and normally-off operation. 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), 483(2019).

    [11] E Fabris, C De Santi, A Caria et al. Trapping and detrapping mechanisms in β-Ga2O3 vertical FinFETs investigated by electro-optical measurements. IEEE Trans Electron Devices, 67, 3954(2020).

    [12] M H Wong, H Murakami, Y Kumagai et al. Aperture-limited conduction and its possible mechanism in ion-implanted current aperture vertical β-Ga2O3 MOSFETs. Appl Phys Lett, 118, 012102(2021).

    [13] M H Wong, H Murakami, Y Kumagai et al. Enhancement-mode β-Ga2O3 current aperture vertical MOSFETs with N-ion-implanted blocker. IEEE Electron Device Lett, 41, 296(2020).

    [14] S Sdoeung, K Sasaki, K Kawasaki et al. Line-shaped defects: Origin of leakage current in halide vapor-phase epitaxial (001) β-Ga2O3 Schottky barrier diodes. Appl Phys Lett, 120, 122107(2022).

    [15] S Sdoeung, K Sasaki, K Kawasaki et al. Probe-induced surface defects: Origin of leakage current in halide vapor-phase epitaxial (001) β-Ga2O3 Schottky barrier diodes. Appl Phys Lett, 120, 092101(2022).

    [16] H L Huang, C Chae, J Hwang. Perspective on atomic scale investigation of point and extended defects in gallium oxide. J Appl Phys, 131, 190901(2022).

    [17] M J Tadjer, J L Lyons, N Nepal et al. Review—Theory and characterization of doping and defects in β-Ga2O3. ECS J Solid State Sci Technol, 8, Q3187(2019).

    [18] H Nishinaka, T Nagaoka, Y Kajita et al. Rapid homoepitaxial growth of (010) β-Ga2O3 thin films via mist chemical vapor deposition. Mater Sci Semicond Process, 128, 105732(2021).

    [19] K Goto, H Murakami, A Kuramata et al. Effect of substrate orientation on homoepitaxial growth of β-Ga2O3 by halide vapor phase epitaxy. Appl Phys Lett, 120, 102102(2022).

    [20] P Mazzolini, A Falkenstein, Z Galazka et al. Offcut-related step-flow and growth rate enhancement during (100) β-Ga2O3 homoepitaxy by metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE). Appl Phys Lett, 117, 222105(2020).

    [21] P Mazzolini, O Bierwagen. Towards smooth (010) β-Ga2O3 films homoepitaxially grown by plasma assisted molecular beam epitaxy: The impact of substrate offcut and metal-to-oxygen flux ratio. J Phys D, 53, 354003(2020).

    [22] Y X Zhang, Z X Feng, M R Karim et al. High-temperature low-pressure chemical vapor deposition of β-Ga2O3. J Vac Sci Technol A, 38, 050806(2020).

    [23] P Ranga, A Bhattacharyya, L Whittaker-Brooks et al. N-type doping of low-pressure chemical vapor deposition grown β-Ga2O3 thin films using solid-source germanium. J Vac Sci Technol A, 39, 030404(2021).

    [24] T S Chou, Anooz S Bin, R Grüneberg et al. Si doping mechanism in MOVPE-grown (100) β-Ga2O3 films. Appl Phys Lett, 121, 032103(2022).

    [25] K Ikenaga, N Tanaka, T Nishimura et al. Effect of high temperature homoepitaxial growth of β-Ga2O3 by hot-wall metalorganic vapor phase epitaxy. J Cryst Growth, 582, 126520(2022).

    [26] W B Tang, Y J Ma, X D Zhang et al. High-quality (001) β-Ga2O3 homoepitaxial growth by metalorganic chemical vapor deposition enabled by in situ indium surfactant. Appl Phys Lett, 120, 212103(2022).

    [27] W H Zhang, H Z Zhang, Z Z Zhang et al. Heteroepitaxial β-Ga2O3 thick films on sapphire substrate by carbothermal reduction rapid growth method. Semicond Sci Technol, 37, 085014(2022).

    [28] P Mazzolini, A Falkenstein, C Wouters et al. Substrate-orientation dependence of β-Ga2O3 (100), (010), (001), and ( 2¯01 ) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE). APL Mater, 8, 011107(2020).

    [29] S Mu, M G Wang, H Peelaers et al. First-principles surface energies for monoclinic Ga2O3 and Al2O3 and consequences for cracking of (AlxGa1−x)2O3. APL Mater, 8, 091105(2020).

    [30] A F M Anhar Uddin Bhuiyan, Z X Feng, J M Johnson et al. MOCVD epitaxy of ultrawide bandgap β-(AlxGa1–x)2O3 with high-Al composition on (100) β-Ga2O3 substrates. Cryst Growth Des, 20, 6722(2020).

    [31] Anooz S Bin, R Grüneberg, C Wouters et al. Step flow growth of β-Ga2O3 thin films on vicinal (100) β-Ga2O3 substrates grown by MOVPE. Appl Phys Lett, 116, 182106(2020).

    [32] R Schewski, K Lion, A Fiedler et al. Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting. APL Mater, 7, 022515(2018).

    [33] C L Wang, H Zhou, J C Zhang et al. Hysteresis-free and μs-switching of D/E-modes Ga2O3 hetero-junction FETs with the BV2/Ron, sp of 0.74/0.28 GW/cm2. Appl Phys Lett, 120, 112101(2022).

    [34] C L Wang, J C Zhang, S R Xu et al. Progress in state-of-the-art technologies of Ga2O3 devices. J Phys D:Appl Phys, 54, 243001(2021).

    [35] K Sasaki, M Higashiwaki, A Kuramata et al. Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts. Appl Phys Express, 6, 086502(2013).

    [36] T Oshima, N Arai, N Suzuki et al. Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy. Thin Solid Films, 516, 5768(2008).

    [37] L Y Meng, A F M A U Bhuiyan, Z X Feng et al. Metalorganic chemical vapor deposition of (100) β-Ga2O3 on on-axis Ga2O3 substrates. J Vac Sci Technol A, 40, 062706(2022).

    [38] T S Ngo, D D Le, J Lee et al. Investigation of defect structure in homoepitaxial ( 2¯01 ) β-Ga2O3 layers prepared by plasma-assisted molecular beam epitaxy. J Alloys Compd, 834, 155027(2020).

    [39] A F M A U Bhuiyan, Z X Feng, J M Johnson et al. MOCVD growth of β-phase (AlxGa1−x)2O3 on ( 2¯01 ) β-Ga2O3 substrates. Appl Phys Lett, 117, 142107(2020).

    [40] P P Ma, J Zheng, Y B Zhang et al. Investigation on n-type ( 2¯01 ) β-Ga2O3 ohmic contact via Si ion implantation. Tsinghua Sci Technol, 28, 150(2023).

    [41] A Nikolskaya, E Okulich, D Korolev et al. Ion implantation in β-Ga2O3: Physics and technology. J Vac Sci Technol A, 39, 030802(2021).

    [42] M H Lee, T S Chou, S Bin Anooz et al. Exploiting the nanostructural anisotropy of β-Ga2O3 to demonstrate giant improvement in titanium/gold ohmic contacts. ACS Nano, 16, 11988(2022).

    [43] R Sharma, M E Law, F Ren et al. Diffusion of dopants and impurities in β-Ga2O3. J Vac Sci Technol A, 39, 060801(2021).

    [44] Y N Zhang, J C Zhang, Z Q Feng et al. Impact of implanted edge termination on vertical β-Ga2O3 Schottky barrier diodes under OFF-state stressing. IEEE Trans Electron Devices, 67, 3948(2020).

    [45] P Ranga, A Bhattacharyya, A Chmielewski et al. Growth and characterization of metalorganic vapor-phase epitaxy-grown β-(AlxGa1–x)2O3/β-Ga2O3 heterostructure channels. Appl Phys Express, 14, 025501(2021).

    Wenbo Tang, Xueli Han, Xiaodong Zhang, Botong Li, Yongjian Ma, Li Zhang, Tiwei Chen, Xin Zhou, Chunxu Bian, Yu Hu, Duanyang Chen, Hongji Qi, Zhongming Zeng, Baoshun Zhang. Homoepitaxial growth of (100) Si-doped β-Ga2O3 films via MOCVD[J]. Journal of Semiconductors, 2023, 44(6): 062801
    Download Citation