• Photonics Research
  • Vol. 8, Issue 11, 1757 (2020)
Kathirvel Nallappan1、2、4、*, Yang Cao2, Guofu Xu2, Hichem Guerboukha2、3, Chahé Nerguizian1, and Maksim Skorobogatiy2、5、*
Author Affiliations
  • 1Department of Electrical Engineering, Polytechnique Montréal, Montréal, Québec H3T1J4, Canada
  • 2Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3T1J4, Canada
  • 3School of Engineering, Brown University, Providence, Rhode Island 02912, USA
  • 4e-mail: kathirvel.nallappan@polymtl.ca
  • 5e-mail: maksim.skorobogatiy@polymtl.ca
  • show less
    DOI: 10.1364/PRJ.396433 Cite this Article Set citation alerts
    Kathirvel Nallappan, Yang Cao, Guofu Xu, Hichem Guerboukha, Chahé Nerguizian, Maksim Skorobogatiy. Dispersion-limited versus power-limited terahertz communication links using solid core subwavelength dielectric fibers[J]. Photonics Research, 2020, 8(11): 1757 Copy Citation Text show less
    References

    [1] T. Nagatsuma, G. Ducournau, C. C. Renaud. Advances in terahertz communications accelerated by photonics. Nat. Photonics, 10, 371-379(2016).

    [2] H. Guerboukha, K. Nallappan, M. Skorobogatiy. Toward real-time terahertz imaging. Adv. Opt. Photon., 10, 843-938(2018).

    [3] J. Li, K. Nallappan, H. Guerboukha, M. Skorobogatiy. 3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications. Opt. Express, 25, 4126-4144(2017).

    [4] Y. Niu, Y. Li, D. Jin, L. Su, A. V. Vasilakos. A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Netw., 21, 2657-2676(2015).

    [5] J. Zhang, P. Tang, L. Tian, Z. Hu, T. Wang, H. Wang. 6–100  GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication. Sci. China Inf. Sci., 60, 080301(2017).

    [6] P. H. Siegel. Terahertz technology. IEEE Trans. Microwave Theory Tech., 50, 910-928(2002).

    [7] Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, S. Li. A survey on terahertz communications. China Commun., 16, 1-35(2019).

    [8] J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, D. M. Mittleman. Security and eavesdropping in terahertz wireless links. Nature, 563, 89-93(2018).

    [9] Q. Wu, C. Lin, B. Lu, L. Miao, X. Hao, Z. Wang, Y. Jiang, W. Lei, X. Den, H. Chen. A 21  km 5  Gbps real time wireless communication system at 0.14  THz. 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2(2017).

    [10] S. Galli, J. Liu, G. Zhang. Bare metal wires as open waveguides, with applications to 5G. IEEE International Conference on Communications (ICC), 1-6(2018).

    [11] A. Markov, H. Guerboukha, M. Skorobogatiy. Hybrid metal wire-dielectric terahertz waveguides: challenges and opportunities. J. Opt. Soc. Am. B, 31, 2587-2600(2014).

    [12] A. Markov, M. Skorobogatiy. Two-wire terahertz fibers with porous dielectric support. Opt. Express, 21, 12728-12743(2013).

    [13] C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun. Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding. Opt. Express, 18, 309-322(2010).

    [14] A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, M. Skorobogatiy. Transmission measurements of hollow-core THz Bragg fibers. J. Opt. Soc. Am. B, 28, 896-907(2011).

    [15] H. Bao, K. Nielsen, O. Bang, P. U. Jepsen. Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding. Sci. Rep., 5, 7620(2015).

    [16] T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, M. Skorobogatiy. 3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors. Adv. Opt. Mater., 4, 2085-2094(2016).

    [17] A. Cruz, C. Cordeiro, M. J. F. Franco. 3D printed hollow-core terahertz fibers. Fibers, 6, 43(2018).

    [18] S. Yang, X. Sheng, G. Zhao, Y. Wang, Y. Yu. Novel pentagram THz hollow core anti-resonant fiber using a 3D printer. J. Infrared Millimeter Terahertz Waves, 40, 720-730(2019).

    [19] R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, X.-Z. Bai. Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding. IEEE Photon. Technol. Lett., 19, 910-912(2007).

    [20] A. Hassani, A. Dupuis, M. Skorobogatiy. Low loss porous terahertz fibers containing multiple subwavelength holes. Appl. Phys. Lett., 92, 071101(2008).

    [21] A. Hassani, A. Dupuis, M. Skorobogatiy. Porous polymer fibers for low-loss terahertz guiding. Opt. Express, 16, 6340-6351(2008).

    [22] S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, T. M. Monro. Porous fibers: a novel approach to low loss THz waveguides. Opt. Express, 16, 8845-8854(2008).

    [23] A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, M. Skorobogatiy. Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method. Opt. Express, 17, 8012-8028(2009).

    [24] M. I. Hasan, S. A. Razzak, G. Hasanuzzaman, M. S. Habib. Ultra-low material loss and dispersion flattened fiber for THz transmission. IEEE Photon. Technol. Lett., 26, 2372-2375(2014).

    [25] K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, P. U. Jepsen. Bendable, low-loss Topas fibers for the terahertz frequency range. Opt. Express, 17, 8592-8601(2009).

    [26] L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, C.-K. Sun. Low-loss subwavelength plastic fiber for terahertz waveguiding. Opt. Lett., 31, 308-310(2006).

    [27] M. Roze, B. Ung, A. Mazhorova, M. Walther, M. Skorobogatiy. Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance. Opt. Express, 19, 9127-9138(2011).

    [28] H. Li, H. Xiao, J. Yuan, W. Wang, B. Yin, B. Wu, Z. Han. Terahertz polarization-maintaining subwavelength dielectric waveguides. J. Opt., 20, 125602(2018).

    [29] S. Atakaramians, S. Afshar, T. M. Monro, D. Abbott. Terahertz dielectric waveguides. Adv. Opt. Photon., 5, 169-215(2013).

    [30] G. Humbert. Optical fibers in terahertz domain. Handbook of Optical Fibers, 1-49(2019).

    [31] A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, B. A. Rahman. Specialty fibers for terahertz generation and transmission: a review. IEEE J. Sel. Top. Quantum Electron., 22, 365-379(2015).

    [32] B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, M. Skorobogatiy. Polymer microstructured optical fibers for terahertz wave guiding. Opt. Express, 19, B848-B861(2011).

    [33] A. Argyros. Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials. Int. Scholarly Res. Not., 2013, 785162(2013).

    [34] J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, C.-K. Sun. Terahertz air-core microstructure fiber. Appl. Phys. Lett., 92, 064105(2008).

    [35] G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko. Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments. Adv. Opt. Mater., 6, 1800573(2018).

    [36] K. Nielsen, H. K. Rasmussen, P. U. Jepsen, O. Bang. Porous-core honeycomb bandgap THz fiber. Opt. Lett., 36, 666-668(2011).

    [37] S. Atakaramians, S. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, T. M. Monro. THz porous fibers: design, fabrication and experimental characterization. Opt. Express, 17, 14053-14062(2009).

    [38] M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, D. Abbott. Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt. Fiber Technol., 34, 6-11(2017).

    [39] T. Ma, A. Markov, L. Wang, M. Skorobogatiy. Graded index porous optical fibers-dispersion management in terahertz range. Opt. Express, 23, 7856-7869(2015).

    [40] G. Xu, K. Nallappan, Y. Cao, M. Skorobogatiy. Fabrication of low loss and near zero dispersion suspended core polypropylene fibers for terahertz communications using infinity 3D printing technique. engrXiv 239j4(2020).

    [41] M. De Wit, Y. Zhang, P. Reynaert. Analysis and design of a foam-cladded PMF link with phase tuning in 28-nm CMOS. IEEE J. Solid-State Circuits, 54, 1960-1969(2019).

    [42] H. Han, H. Park, M. Cho, J. Kim. Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett., 80, 2634-2636(2002).

    [43] H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, C.-K. Sun. Investigation on spectral loss characteristics of subwavelength terahertz fibers. Opt. Lett., 32, 1017-1019(2007).

    [44] H.-W. Chen, C.-M. Chiu, C.-H. Lai, J.-L. Kuo, P.-J. Chiang, Y.-J. Hwang, H.-C. Chang, C.-K. Sun. Subwavelength dielectric-fiber-based THz coupler. J. Lightwave Technol., 27, 1489-1495(2009).

    [45] H. Li, S. Atakaramians, J. Yuan, H. Xiao, W. Wang, Y. Li, B. Wu, Z. Han. Terahertz polarization-maintaining subwavelength filters. Opt. Express, 26, 25617-25629(2018).

    [46] J. Ma, M. Weidenbach, R. Guo, M. Koch, D. Mittleman. Communications with THz waves: switching data between two waveguides. J. Infrared Millimeter Terahertz Waves, 38, 1316-1320(2017).

    [47] M. Taherkhani, R. Sadeghzadeh, J. Taiber, J. Ornik, M. Koch. The effect of humidity and temperature on dielectric fibre-bound THz transmission. J. Infrared Millimeter Terahertz Waves, 40, 1092-1102(2019).

    [48] H. Guerboukha, G. Yan, O. Skorobogata, M. Skorobogatiy. Silk foam terahertz waveguides. Adv. Opt. Mater., 2, 1181-1192(2014).

    [49] K. Nallappan, H. Guerboukha, Y. Cao, C. Nerguizian, M. Skorobogatiy. Experimental demonstration of 5  Gbps data transmission using long subwavelength fiber at 140  GHz. IEEE Radio and Wireless Symposium (RWS), 1-4(2019).

    [50] K. Nallappan, C. Nerguizian, H. Guerboukha, M. Skorobogatiy, Y. Cao. High bitrate data transmission using polypropylene fiber in terahertz frequency range. International Workshop on Antenna Technology (iWAT), 81-83(2019).

    [51] K. Nallappan, C. Nerguizian, H. Guerboukha, Y. Cao, M. Skorobogatiy. Signal transmission using solid core terahertz waveguide. The 8th International Conference on Optical Terahertz Science and Technology, Tu-P-23(2019).

    [52] F. Voineau, C. Dehos, B. Martineau, M. Sié, M. Perchicot, N. H. Nguyen, A. Ghiotto, E. Kerhervé. A 12  Gb/s 64QAM and OFDM compatible millimeter-wave communication link using a novel plastic waveguide design. IEEE Radio and Wireless Symposium (RWS), 250-252(2018).

    [53] W. Volkaerts, N. Van Thienen, P. Reynaert. 10.2 An FSK plastic waveguide communication link in 40  nm CMOS. IEEE International Solid-State Circuits Conference, 1-3(2015).

    [54] N. Van Thienen, Y. Zhang, M. De Wit, P. Reynaert. An 18 Gbps polymer microwave fiber (PMF) communication link in 40  nm CMOS. ESSCIRC Conference: 42nd European Solid-State Circuits Conference, 483-486(2016).

    [55] K. Nallappan, Y. Cao, G. Xu, H. Guerboukha, C. Nerguizian, M. Skorobogatiy. Increasing reliability of terahertz communication links using onboard fiber connectivity. 10th Annual Computing and Communication Workshop and Conference (CCWC), 1065-1070(2020).

    [56] X. Yu, Y. Hosoda, T. Miyamoto, K. Obata, J.-Y. Kim, M. Fujita, T. Nagatsuma. Terahertz fibre transmission link using resonant tunnelling diodes integrated with photonic-crystal waveguides. Electron. Lett., 55, 398-400(2019).

    [57] Q. J. Gu. THz interconnect: the last centimeter communication. IEEE Commun. Mag., 53, 206-215(2015).

    [58] B. Yu, Y. Ye, X. Ding, Y. Liu, Z. Xu, X. Liu, Q. J. Gu. Ortho-mode sub-THz interconnect channel for planar chip-to-chip communications. IEEE Trans. Microwave Theory Tech., 66, 1864-1873(2018).

    [59] W. Withayachumnankul, M. Fujita, T. Nagatsuma. Integrated silicon photonic crystals toward terahertz communications. Adv. Opt. Mater., 6, 1800401(2018).

    [60] X. Yu, M. Sugeta, Y. Yamagami, M. Fujita, T. Nagatsuma. Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications. Appl. Phys. Express, 12, 012005(2019).

    [61] K. Tsuruda, M. Fujita, T. Nagatsuma. Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab. Opt. Express, 23, 31977-31990(2015).

    [62] A. Locatelli, G. E. Town, C. D. Angelis. Graphene-based terahertz waveguide modulators. IEEE Trans. Terahertz Sci. Technol., 5, 351-357(2015).

    [63] K. I. Zaytsev, G. M. Katyba, N. V. Chernomyrdin, I. N. Dolganova, A. S. Kucheryavenko, A. N. Rossolenko, V. V. Tuchin, V. N. Kurlov, M. Skorobogatiy. Overcoming the Abbe diffraction limit using a bundle of metal-coated high-refractive-index sapphire optical fibers. Adv. Opt. Mater., 8, 2000307(2020).

    [64] K. Nallappan, H. Guerboukha, C. Nerguizian, M. Skorobogatiy. Live streaming of uncompressed 4K video using terahertz wireless links. IEEE International Conference on Communications (ICC), 1-7(2018).

    [65] K. Nallappan, H. Guerboukha, C. Nerguizian, M. Skorobogatiy. Live streaming of uncompressed HD and 4K videos using terahertz wireless links. IEEE Access, 6, 58030-58042(2018).

    [66] R. Ortuño, C. García-Meca, A. Martínez. Terahertz metamaterials on flexible polypropylene substrate. Plasmonics, 9, 1143-1147(2014).

    [67] Y.-S. Jin, G.-J. Kim, S.-G. Jeon. Terahertz dielectric properties of polymers. J. Korean Phys. Soc., 49, 513-517(2006).

    [68] M. Afsar. Dielectric measurements of common polymers at millimeter wavelength. IEEE MTT-S International Microwave Symposium Digest, 439-442(1985).

    [69] M. Navarro-Cia, J. Wu, H. Liu, O. Mitrofanov. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides. Sci. Rep., 6, 38926(2016).

    [70] Y. Yang, A. Shutler, D. Grischkowsky. Measurement of the transmission of the atmosphere from 0.2 to 2 THz. Opt. Express, 19, 8830-8838(2011).

    [71] J.-F. Roux, F. Aquistapace, F. Garet, L. Duvillaret, J.-L. Coutaz. Grating-assisted coupling of terahertz waves into a dielectric waveguide studied by terahertz time-domain spectroscopy. Appl. Opt., 41, 6507-6513(2002).

    [72] M. Skorobogatiy. Nanostructured and Subwavelength Waveguides: Fundamentals and Applications(2012).

    [73] M. Skorobogatiy, J. Yang. Fundamentals of Photonic Crystal Guiding(2009).

    [74] D. Marcuse. Curvature loss formula for optical fibers. J. Opt. Soc. Am., 66, 216-220(1976).

    [75] R. T. Schermer, J. H. Cole. Improved bend loss formula verified for optical fiber by simulation and experiment. IEEE J. Quantum Electron., 43, 899-909(2007).

    [76] G. P. Agrawal. Lightwave Technology: Telecommunication Systems(2005).

    [77] Y. Yang, A. Shutler, D. Grischkowsky. Measurement of the transmission of the atmosphere from 0.2 to 2  THz. Opt. Express, 19, 8830-8838(2011).

    [78] T. Ma, K. Nallapan, H. Guerboukha, M. Skorobogatiy. Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation. Opt. Express, 25, 11009-11026(2017).

    [79] J. Y. Suen, M. T. Fang, S. P. Denny, P. M. Lubin. Modeling of terabit geostationary terahertz satellite links from globally dry locations. IEEE Trans. Terahertz Sci. Technol., 5, 299-313(2015).

    [80] A. Roggenbuck, K. Thirunavukkuarasu, H. Schmitz, J. Marx, A. Deninger, I. C. Mayorga, R. Güsten, J. Hemberger, M. Grüninger. Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer. J. Opt. Soc. Am. B, 29, 614-620(2012).

    [81] B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-L. Pan. Subwavelength plastic wire terahertz time-domain spectroscopy. Appl. Phys. Lett., 96, 051105(2010).

    Kathirvel Nallappan, Yang Cao, Guofu Xu, Hichem Guerboukha, Chahé Nerguizian, Maksim Skorobogatiy. Dispersion-limited versus power-limited terahertz communication links using solid core subwavelength dielectric fibers[J]. Photonics Research, 2020, 8(11): 1757
    Download Citation