• Laser & Optoelectronics Progress
  • Vol. 50, Issue 2, 20008 (2013)
Qu Xiaosheng*, Zhang Sisi, Xiong Liling, and Bao Hongyin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop50.020008 Cite this Article Set citation alerts
    Qu Xiaosheng, Zhang Sisi, Xiong Liling, Bao Hongyin. Research Progress of Quantum-Dot Intermediate Band Solar Cell[J]. Laser & Optoelectronics Progress, 2013, 50(2): 20008 Copy Citation Text show less
    References

    [1] Yu Rongjin. Optics and solar energy [J]. Acta Optica Sinica, 2009, 29(7): 1751~1755

    [2] Huang Xiaogang. Chinese solar power—policy is the catalyst while reducing the cost of power generation is the key [J]. Laser & Optoelectronics Progress, 2009, 46(7): 71~72

    [3] W. Shockley, H J. J. Queisser. Detailed balance limit of efficiency of p-n junction solar cells [J]. J. Appl. Phys., 1961, 32(3): 510~520

    [4] G. J. Bauhuis, P. Mulder, E. J. Haverkamp et al.. 26.1% thin-film GaAs solar cell using epitaxial lift-off [J]. Sol. Energ. Mat. Sol. C., 2009, 93(9): 1488~1491

    [5] A. J. Waldau. Solar Cell Production and Market Implementation of Photovoltaics [R]. PV Status Report 2009, European Commission, 2009

    [6] S. M. Hubbard, C. G. Bailey, R. Aguinaldo et al.. Characterization of quantum dot enhanced solar cells for concentrator photovoltaics [C]. 34th IEEE Photovoltaic Specialists Conference, 2009. 90~95

    [7] A. Luque, A. Martí, A. J. Nozik. Solar cells based on quantum dots [J]. MRS Bulletin, 2007, 32(3): 236~241

    [8] A. Luque, A. Martí. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels [J]. Phys. Rev. Lett., 1997, 78(26): 5014~5017

    [9] L. R. Cuadra, A. Martí, A. Luque. Quasi-drift diffusion model for the quantum dot intermediate band solar cell [J]. Phys. E, 2002, 49(9): 1632~1639

    [10] S. Tomic, A. G. Sunderland, I. J. Bych. Parallel multi-band K-P code for electronic structure of zinc blend semiconductor quantum dots [J]. J. Mater. Chem., 2006, 16(20): 1963~1972

    [11] C. Tablero, P. Wahno. Analysis of metallic intermediate-band formation in photovoltaic materials [J]. Appl. Phys. Lett., 2003, 82(1): 151~153

    [12] T. Yasuhiko, I. Tadashi, M. Tomoyoshi et al.. Solar energy conversion using temperature controlled carrier [C]. 22nd European, 2007. 187

    [13] S. Kettemann, J. F. Guillemoles. Limiting efficiency of LDS solar cells [C]. 13th European PVSEC, 1995. 119

    [14] K. W. Boer. Survey of Semiconductor Physics [M]. New York: Van Nostrand Reinhold, 1990. 201, 249, 617

    [15] M. A. Green. Third generation photovoltaics: ultra-high conversion efficiency at low cost [J]. Prog. Photovoltaic, 2001, 9(2): 123~137

    [16] J. Nelson. The Physics of Solar Cells[M]. London: Imperial College Press, 2003. 303

    [17] Xiong Shaozhen, Zhu Meifang. The Foundation and Application of Solar Cell[M]. Beijing: Science Press, 2003. 303

    [18] P. Wahnón, P. Palacios, J. J. Fernández et al.. Properties of intermediate band materials [J]. Solar Energy Materials and Solar Cells, 2005, 87(1-4): 323~331

    [19] A. Martí, N. López, E. Antolín et al.. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells [J]. Appl. Phys. Lett., 2005, 87(8): 083505

    [20] D. Guimard, R. Morihara, D. Bordel et al.. Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage[J]. Appl. Phys. Lett., 2010, 96(20): 203507

    [21] A. Luque, P. G. Linares, E. Antolín et al.. Multiple levels intermediate band solar cells [J]. Appl. Phys. Lett., 2010, 96(1): 013501

    [22] A. Luque, A. Martí, E. Antolín et al.. Intraband absorption for normal illumination in quantum dot intermediate band solar cells[J]. Solar Energy Materials and Solar Cells, 2010, 104(11): 113103

    [23] A. Martí, E. Antolín, C. R. Stanley et al.. Production of photocurrent due to intermediate to conduction band transitions: a demonstration of a key operating principle of the intermediate band solar cell [J]. Phys. Rev. Lett., 2006, 97(24): 247701~247704

    [24] C. W. Snyder, B. G. Orr, D. Kesler. Effects of strain on surface morphology in highly strained InGaAs films [J]. Phys. Rev. Lett., 1991, 66(23): 3032~3035

    [25] Wang Zhanguo, Chen Yonghai, Ye Xiaoling. Nano-Semiconductor Technology [M]. Beijing: Chemical Industry Press, 2006

    [26] S. Liang, H. L. Zhu, J. Q. Pan et al.. Comparative study of InAs quantum dots grown on different GaAs substrates by MOCVD[J]. J. Crystal Growth, 2005, 282(3-4): 297~304

    [27] G. Fasching, F. F. Schrey, T. Roch et al.. Single InAs/GaAs quantum dots: photocurrent and cross-sectional AFM analysis [J]. Phys. E, 2006, 32(1-2): 183~186

    [28] O. Engstrm, M. Kaniewska. Deep level transient spectroscopy in quantum dot characterization [J]. Nanoscale Res. Lett., 2008, 3(5): 179~185

    [29] R. R. King, D. C. Law, K. M. Edmondson et al.. 40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells[J]. Appl. Phys. Lett., 2007, 90(18): 183516

    [30] G. Wolfgang, J. Schne, P. P. Simon et al.. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight[J]. Appl. Phys. Lett., 2009, 94(22): 223504

    [31] T. Sugaya, Y. Kamikawa, S. Furue et al.. Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs [J]. Solar Energy Materials and Solar Cells, 2011, 95(1): 163~166

    [32] L. Marti, N. Lopez, E. Antolin et al.. Emitter degradation in quantum dot intermediate band solar cells[J]. Appl. Phys. Lett., 2007, 90(23): 233510~233512

    [33] Y. Shoji, K. Akimoto, Y. Okada. Optical properties of multi-stacked InGaAs/GaNAs quantum dot solar cell fabricated on GaAs (311)B substrate [J]. J. Appl. Phys., 2012, 112(6): 064314

    [34] G. B. Christopher, V. F. David, P. R. Ryne et al.. Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells [J]. Appl. Phys. Lett., 2011, 98(16): 163105

    [35] Dongzhi Hu, C. M. Claiborne, T. Y. Edward et al.. Improvement of performance of InAs quantum dot solar cell by inserting thin AlAs layers [J]. Nanoscale Res. Lett., 2011, 6(1): 83

    [36] T. Katsuaki, G. Denis, B. Damien et al.. High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition [J]. Appl. Phys. Lett., 2012, 100(19): 193905

    [37] R. R. King, D. Bhusari, A. Boca et al.. Band gap-voltage offset and energy production in next generation multijunction solar cells [J]. Prog. Photovoltaics, 2011, 19(7): 797~812

    [38] Su Shi, Zhang Guoyu, Fu Yun et al.. New development of solar simulator[J]. Laser & Optoelectronics Progress, 2012, 49(7): 070003

    [39] S. Samar, C. W. King, S. G. Bailey et al.. InAs quantum dot development for enhanced InGaAs space solar cells [C]. 31st IEEE Photovoltaics Specialists Conference, 2005. 94~97

    [40] E. V. Christopher, C. Simon, F. Simon et al.. Measurement of high efficiency 1 cm2 AlGaInP/InGaAs/Ge solar cells with embedded InAs quantum dots at up to 1000 suns continuous concentration [C]. 35th IEEE Photovoltaics Specialists Conference, 2010, 1253~1258

    [41] C. Gavin, G. Martin, C. Eun-Chel et al.. Silicon quantum dot nanostructures for tandem photovoltaic cells [J]. Thin Solid Films, 2008, 516(20): 6748~6756

    [42] D. Dawei, P. W. Ivanl, G. Angus et al.. Impacts of post-metallisation processes on the electrical and photovoltaic properties of Si quantum dot solar cells[J]. Nanoscale Res. Lett., 2010, 5(11): 1762~1767

    [43] M. Zacharias, J. Heitmann, R. Scholz et al.. Size-controlled highly luminescent silicon nanocrystals: ASiO/SiO2 super lattice approach [J]. Appl. Phys. Lett., 2012, 80(4): 661~663

    [44] W. Jiang, Z. M. Wang, G. D. Vitaliy et al.. Strain-free ring-shaped nanostructures by droplet epitaxy for photovoltaic application [J]. Appl. Phys. Lett., 2012, 101(4): 043904

    [45] Fang Zujie, Chen Gaoting, Ye Qing et al.. Progress of photovoltaic electric power generation [J]. Chinese J. Lasers, 2009, 36(1): 5~14

    [46] Jiang Yuan, Yin Zhidong. Applications of optical fibers in solar energy system[J]. Laser & Optoelectronics Progress, 2009, 46(10): 49~56

    CLP Journals

    [1] Jiang Jianhui, Wu Kongping, Lu Kailin, Qi Jian, Peng Bo, Zhu Yanna. Effect of Intermediate-Band on the ZnO/ZnTe Photovoltaic Solar Cell[J]. Acta Optica Sinica, 2015, 35(9): 916003

    [2] Zhou Tao, Lu Xiaodong, Li Yuan, Zhang Peng, Zhang Ming. Upper Surface Anti-Reflection Coating on Crystalline Silicon Solar Cell[J]. Laser & Optoelectronics Progress, 2014, 51(10): 103101

    [3] Chen Gang, Xu Jun. Influence of Annealing Temperature on the Dielectric Function of Quantum Dots Doped Glass[J]. Acta Optica Sinica, 2015, 35(5): 516003

    Qu Xiaosheng, Zhang Sisi, Xiong Liling, Bao Hongyin. Research Progress of Quantum-Dot Intermediate Band Solar Cell[J]. Laser & Optoelectronics Progress, 2013, 50(2): 20008
    Download Citation