• Photonics Research
  • Vol. 9, Issue 2, 213 (2021)
Xiongbin Wang1、2、†, Qiushi Wang3、†, Yulong Chen1、4、†, Jiagen Li5, Ruikun Pan3, Xing Cheng4, Kar Wei Ng1, Xi Zhu5, Tingchao He6、7、*, Jiaji Cheng3、8、*, Zikang Tang1、9、*, and Rui Chen2、10、*
Author Affiliations
  • 1Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
  • 2Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • 3School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
  • 4Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • 5Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518172, China
  • 6College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 7e-mail: tche@szu.edu.cn
  • 8e-mail: jiajicheng@hubu.edu.cn
  • 9e-mail: zktang@um.edu.mo
  • 10e-mail: chenr@sustech.edu.cn
  • show less
    DOI: 10.1364/PRJ.413592 Cite this Article Set citation alerts
    Xiongbin Wang, Qiushi Wang, Yulong Chen, Jiagen Li, Ruikun Pan, Xing Cheng, Kar Wei Ng, Xi Zhu, Tingchao He, Jiaji Cheng, Zikang Tang, Rui Chen. Metal-to-ligand charge transfer chirality-based sensing of mercury ions[J]. Photonics Research, 2021, 9(2): 213 Copy Citation Text show less
    References

    [1] J. Hao, Y. Li, X. Xu, F. Zhao, R. Pan, J. Li, H. Liu, K. Wang, J. Li, X. Zhu, M.-H. Delville, M. Zhang, T. He, J. Cheng. Metal-to-ligand charge transfer chirality sensing of D-glucose assisted with GOX-based enzymatic reaction. Adv. Mater. Technol., 5, 2000138(2020).

    [2] I. V. Martynenko, V. A. Kuznetsova, I. K. Litvinov, A. O. Orlova, V. G. Maslov, A. V. Fedorov, A. Dubavik, F. Purcell-Milton, Y. K. Gun’ko, A. V. Baranov. Enantioselective cellular uptake of chiral semiconductor nanocrystals. Nanotechnology, 27, 075102(2016).

    [3] D. Meng, W. Ma, X. Wu, C. Xu, H. Kuang. DNA-driven two-layer core–satellite gold nanostructures for ultrasensitive microRNA detection in living cells. Small, 16, 2000003(2020).

    [4] A. Kühnle, T. R. Linderoth, B. Hammer, F. Besenbacher. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature, 415, 891-893(2002).

    [5] S. Li, J. Liu, N. S. Ramesar, H. Heinz, L. Xu, C. Xu, N. A. Kotov. Single- and multi-component chiral supraparticles as modular enantioselective catalysts. Nat. Commun., 10, 4826(2019).

    [6] J. E. Govan, E. Jan, A. Querejeta, N. A. Kotov, Y. K. Gun’Ko. Chiral luminescent CdS nano-tetrapods. Chem. Commun., 46, 6072-6074(2010).

    [7] M. P. Moloney, Y. K. Gun’Ko, J. M. Kelly. Chiral highly luminescent CdS quantum dots. Chem. Commun., 38, 3900-3902(2007).

    [8] O. Cleary, F. Purcell-Milton, A. Vandekerckhove, Y. K. Gun’Ko. Chiral and luminescent TiO2 nanoparticles. Adv. Opt. Mater., 5, 1601000(2017).

    [9] J. Ahn, E. Lee, J. Tan, W. Yang, B. Kim, J. Moon. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz., 4, 851-856(2017).

    [10] J. Hao, Y. Li, J. Miao, R. Liu, J. Li, H. Liu, Q. Wang, H. Liu, M.-H. Delville, T. He, K. Wang, X. Zhu, J. Cheng. Ligand-induced chirality in asymmetric CdSe/CdS nanostructures: a close look at chiral tadpoles. ACS Nano, 14, 10346-10358(2020).

    [11] J. Cheng, J. Hao, H. Liu, J. Li, J. Li, X. Zhu, X. Lin, K. Wang, T. He. Optically active CdSe-dot/CdS-rod nanocrystals with induced chirality and circularly polarized luminescence. ACS Nano, 12, 5341-5350(2018).

    [12] B. Zhao, H. Yu, K. Pan, Z. A. Tan, J. Deng. Multifarious chiral nanoarchitectures serving as handed-selective fluorescence filters for generating full-color circularly polarized luminescence. ACS Nano, 14, 3208-3218(2020).

    [13] L. Wang, Y. Xue, M. Cui, Y. Huang, H. Xu, C. Qin, J. Yang, H. Dai, M. Yuan. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. (Int. Ed.), 59, 6442-6450(2020).

    [14] C. Hao, X. Wu, M. Sun, H. Zhang, A. Yuan, L. Xu, C. Xu, H. Kuang. Chiral core–shell upconversion nanoparticle@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J. Am. Chem. Soc., 141, 19373-19378(2019).

    [15] J. Yeom, P. P. G. Guimaraes, H. M. Ahn, B.-K. Jung, Q. Hu, K. McHugh, M. J. Mitchell, C.-O. Yun, R. Langer, A. Jaklenec. Chiral supraparticles for controllable nanomedicine. Adv. Mater., 32, 1903878(2020).

    [16] J. Govan, Y. K. Gun’ko. Recent progress in chiral inorganic nanostructures. Nanoscience, 3, 1-30(2016).

    [17] F. P. Milton, J. Govan, M. V. Mukhina, Y. K. Gun’Ko. The chiral nano-world: chiroptically active quantum nanostructures. Nanoscale Horiz., 1, 14-26(2015).

    [18] J. Yeom, U. S. Santos, M. Chekini, M. Cha, A. F. de Moura, N. A. Kotov. Chiromagnetic nanoparticles and gels. Science, 359, 309-314(2018).

    [19] W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, N. A. Kotov. Chiral inorganic nanostructures. Chem. Rev., 117, 8041-8093(2017).

    [20] W. A. Paiva-Marques, F. Reyes Gómez, O. N. Oliveira, J. R. Mejía-Salazar. Chiral plasmonics and their potential for point-of-care biosensing applications. Sensors, 20, 944(2020).

    [21] J. Cheng, E. H. Hill, Y. Zheng, T. He, Y. Liu. Optically active plasmonic resonance in self-assembled nanostructures. Mater. Chem. Front., 2, 662-678(2018).

    [22] Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, J. Xu. Chiral perovskite: chiral perovskites: promising materials toward next-generation optoelectronics. Small, 15, 1970209(2019).

    [23] X. Gao, B. Han, X. Yang, Z. Tang. Perspective of chiral colloidal semiconductor nanocrystals: opportunity and challenge. J. Am. Chem. Soc., 141, 13700-13707(2019).

    [24] Y. Y. Lee, R. M. Kim, S. W. Im, M. Balamurugan, K. T. Nam. Plasmonic metamaterials for chiral sensing applications. Nanoscale, 12, 58-66(2020).

    [25] A. Visheratina, N. A. Kotov. Inorganic nanostructures with strong chiroptical activity. CCS Chem., 2, 583-604(2020).

    [26] Z. Wang, F. Cheng, T. Winsor, Y. Liu. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology, 27, 412001(2016).

    [27] R. Zhang, Y. Zhou, X. Yan, K. Fan. Advances in chiral nanozymes: a review. Microchim. Acta, 186, 782(2019).

    [28] X. Zhao, S.-Q. Zang, X. Chen. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem. Soc. Rev., 49, 2481-2503(2020).

    [29] Y. Li, X. Wang, J. Miao, J. Li, X. Zhu, R. Chen, Z. Tang, R. Pan, T. He, J. Cheng. Chiral transition metal oxides: synthesis, chiral origins, and perspectives. Adv. Mater., 32, 1905585(2020).

    [30] J. Lv, D. Ding, X. Yang, K. Hou, X. Miao, D. Wang, B. Kou, L. Huang, Z. Tang. Biomimetic chiral photonic crystals. Angew. Chem. (Int. Ed.), 58, 7783-7787(2019).

    [31] Y. Li, Z. Miao, Z. Shang, Y. Cai, J. Cheng, X. Xu. A visible- and NIR-light responsive photothermal therapy agent by chirality-dependent MoO3−x nanoparticles. Adv. Funct. Mater., 30, 1906311(2020).

    [32] S. Li, M. Sun, C. Hao, A. Qu, X. Wu, L. Xu, C. Xu, H. Kuang. Chiral CuxCoyS nanoparticles under magnetic field and NIR light to eliminate senescent cells. Angew. Chem. (Int. Ed.), 59, 13915-13922(2020).

    [33] S. Jiang, M. Chekini, Z.-B. Qu, Y. Wang, A. Yeltik, Y. Liu, A. Kotlyar, T. Zhang, B. Li, H. V. Demir, N. A. Kotov. Chiral ceramic nanoparticles and peptide catalysis. J. Am. Chem. Soc., 139, 13701-13712(2017).

    [34] Y. Li, J. Cheng, J. Li, X. Zhu, T. He, R. Chen, Z. Tang. Tunable chiroptical properties from the plasmonic band to metal–ligand charge transfer band of cysteine-capped molybdenum oxide nanoparticles. Angew. Chem. (Int. Ed.), 57, 10236-10240(2018).

    [35] C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789(1988).

    [36] P. J. Hay, W. R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys., 82, 270-283(1985).

    [37] W. R. Wadt, P. J. Hay. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys., 82, 284-298(1985).

    [38] B. M. Amoli, S. Gumfekar, A. Hu, Y. N. Zhou, B. Zhao. Thiocarboxylate functionalization of silver nanoparticles: effect of chain length on the electrical conductivity of nanoparticles and their polymer composites. J. Mater. Chem., 22, 20048-20056(2012).

    [39] Y. Sun, X. Hu, J. C. Yu, Q. Li, W. Luo, L. Yuan, W. Zhang, Y. Huang. Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy Environ. Sci., 4, 2870-2877(2011).

    [40] G. Berthon. Critical evaluation of the stability constants of metal complexes of amino acids with polar side chains (technical report). Pure Appl. Chem., 67, 1117-1240(1995).

    [41] D. Liu, W. Qu, W. Chen, W. Zhang, Z. Wang, X. Jiang. Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Anal. Chem., 82, 9606-9610(2010).

    [42] X. Ding, L. Kong, J. Wang, F. Fang, D. Li, J. Liu. Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl. Mater. Interfaces, 5, 7072-7078(2013).

    [43] X. Zhang, Z. Dai, S. Si, X. Zhang, W. Wu, H. Deng, F. Wang, X. Xiao, C. Jiang. Ultrasensitive SERS substrate integrated with uniform subnanometer scale ‘hot spots’ created by a graphene spacer for the detection of mercury ions. Small, 13, 1603347(2017).

    [44] L. Chen, N. Qi, X. Wang, L. Chen, H. You, J. Li. Ultrasensitive surface-enhanced Raman scattering nanosensor for mercury ion detection based on functionalized silver nanoparticles. RSC Adv., 4, 15055-15060(2014).

    [45] X. Xu, J. Wang, K. Jiao, X. Yang. Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosens. Bioelectron., 24, 3153-3158(2009).

    [46] J. Du, Z. Wang, J. Fan, X. Peng. Gold nanoparticle-based colorimetric detection of mercury ion via coordination chemistry. Sens. Actuators B, 212, 481-486(2015).

    [47] Y. Wang, M. Gao, C. Liao, F. Yu, L. Chen. A sulfydryl-based near-infrared ratiometic fluorescent probe for assessment of acute/chronic mercury exposure via associated determination of superoxide anion and mercury ion in cells and in vivo. Sens. Actuators B, 301, 127038(2019).

    [48] X. Guo, J. Huang, Y. Wei, Q. Zeng, L. Wang. Fast and selective detection of mercury ions in environmental water by paper-based fluorescent sensor using boronic acid functionalized MoS2 quantum dots. J. Hazard. Mater., 381, 120969(2020).

    [49] L. Wang, B. Li, F. Xu, X. Shi, D. Feng, D. Wei, Y. Li, Y. Feng, Y. Wang, D. Jia, Y. Zhou. High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens. Bioelectron., 79, 1-8(2016).

    [50] L. Zhang, T. Li, B. Li, J. Li, E. Wang. Carbon nanotube–DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(II) ion. Chem. Commun., 46, 1476-1478(2010).

    [51] M. Fayazi, M. A. Taher, D. Afzali, A. Mostafavi. Fe3O4 and MnO2 assembled on halloysite nanotubes: a highly efficient solid-phase extractant for electrochemical detection of mercury(II) ions. Sens. Actuators B, 228, 1-9(2016).

    [52] Z. Zhu, Y. Su, J. Li, D. Li, J. Zhang, S. Song, Y. Zhao, G. Li, C. Fan. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal. Chem., 81, 7660-7666(2009).

    [53] S.-J. Liu, H.-G. Nie, J.-H. Jiang, G.-L. Shen, R.-Q. Yu. Electrochemical sensor for mercury(II) based on conformational switch mediated by interstrand cooperative coordination. Anal. Chem., 81, 5724-5730(2009).

    [54] Y. Zhu, L. Xu, W. Ma, Z. Xu, H. Kuang, L. Wang, C. Xu. A one-step homogeneous plasmonic circular dichroism detection of aqueous mercury ions using nucleic acid functionalized gold nanorods. Chem. Commun., 48, 11889-11891(2012).

    [55] J. Nan, X.-P. Yan. Facile fabrication of chiral hybrid organic–inorganic nanomaterial with large optical activity for selective and sensitive detection of trace Hg2+. Chem. Commun., 46, 4396-4398(2010).

    [56] S. Kacmaz, K. Ertekin, D. Mercan, O. Oter, E. Cetinkaya, E. Celik. An ultra sensitive fluorescent nanosensor for detection of ionic copper. Spectrochim. Acta A, 135, 551-559(2015).

    [57] X. Wang, Y. Lv, X. Hou. A potential visual fluorescence probe for ultratrace arsenic (III) detection by using glutathione-capped CdTe quantum dots. Talanta, 84, 382-386(2011).

    [58] T. Gong, J. Liu, X. Liu, J. Liu, J. Xiang, Y. Wu. A sensitive and selective sensing platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks. Food Chem., 213, 306-312(2016).

    Xiongbin Wang, Qiushi Wang, Yulong Chen, Jiagen Li, Ruikun Pan, Xing Cheng, Kar Wei Ng, Xi Zhu, Tingchao He, Jiaji Cheng, Zikang Tang, Rui Chen. Metal-to-ligand charge transfer chirality-based sensing of mercury ions[J]. Photonics Research, 2021, 9(2): 213
    Download Citation