• Opto-Electronic Advances
  • Vol. 7, Issue 1, 230033 (2024)
Kuan Liu1、†, Zhenyuan Lin3, Bing Han1, Minghui Hong2、*, and Tun Cao1、†,**
Author Affiliations
  • 1School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
  • 2Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
  • 3Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.29026/oea.2024.230033 Cite this Article
    Kuan Liu, Zhenyuan Lin, Bing Han, Minghui Hong, Tun Cao. Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators[J]. Opto-Electronic Advances, 2024, 7(1): 230033 Copy Citation Text show less
    References

    [1] K Kumar, HG Duan, RS Hegde et al. Printing colour at the optical diffraction limit. Nat Nanotechnol, 7, 557-561(2012).

    [2] L Frey, P Parrein, J Raby et al. Color filters including infrared cut-off integrated on CMOS image sensor. Opt Express, 19, 13073-13080(2011).

    [3] HJ Park, T Xu, JY Lee et al. Photonic color filters integrated with organic solar cells for energy harvesting. ACS Nano, 5, 7055-7060(2011).

    [4] H Taguchi, M Enokido. Technology of color filter materials for image sensor. International Image Sensor Workshop (IISW), 34-37(2011).

    [5] YQ Chen, XY Duan, M Matuschek et al. Dynamic color displays using stepwise cavity resonators. Nano Lett, 17, 5555-5560(2017).

    [6] R Fu, KX Chen, ZL Li et al. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci, 1, 220011(2022).

    [7] P Zijlstra, JWM Chon, M Gu. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 459, 410-413(2009).

    [8] X Yang, Y Lin, TZ Wu et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv, 5, 210123(2022).

    [9] TD James, P Mulvaney, A Roberts. The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett, 16, 3817-3823(2016).

    [10] ZB Li, AW Clark, JM Cooper. Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano, 10, 492-498(2016).

    [11] T Xu, EC Walter, A Agrawal et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nat Commun, 7, 10479(2016).

    [12] T Ellenbogen, K Seo, KB Crozier. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett, 12, 1026-1031(2012).

    [13] H You, AJ Steckl. Three-color electrowetting display device for electronic paper. Appl Phys Lett, 97, 023514(2010).

    [14] D Franklin, Y Chen, A Vazquez-Guardado et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat Commun, 6, 7337(2015).

    [15] WS Wang, N Xie, L He et al. Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper. Nat Commun, 5, 5459(2014).

    [16] GJ Stec, A Lauchner, Y Cui et al. Multicolor electrochromic devices based on molecular plasmonics. ACS Nano, 11, 3254-3261(2017).

    [17] XY Duan, S Kamin, N Liu. Dynamic plasmonic colour display. Nat Commun, 8, 14606(2017).

    [18] H Cho, S Han, J Kwon et al. Self-assembled stretchable photonic crystal for a tunable color filter. Opt Lett, 43, 3501-3504(2018).

    [19] SL Shang, QH Zhang, HZ Wang et al. Fabrication of magnetic field induced structural colored films with tunable colors and its application on security materials. J Colloid Interface Sci, 485, 18-24(2017).

    [20] MT Huang, Tan A Jun, F Büttner et al. Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat Commun, 10, 5030(2019).

    [21] MHR Lankhorst, BWSMM Ketelaars, RAM Wolters. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat Mater, 4, 347-352(2005).

    [22] AV Kolobov, P Fons, AI Frenkel et al. Understanding the phase-change mechanism of rewritable optical media. Nat Mater, 3, 703-708(2004).

    [23] FF Schlich, P Zalden, AM Lindenberg et al. Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses. ACS Photonics, 2, 178-182(2015).

    [24] MN Julian, C Williams, S Borg et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging. Optica, 7, 746-754(2020).

    [25] ZY Lin, K Liu, T Cao et al. Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption. Opto-Electron Adv, 6, 230029(2023).

    [26] MA Kats, R Blanchard, P Genevet et al. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat Mater, 12, 20-24(2013).

    [27] YM Andreeva, VC Luong, DS Lutoshina et al. Laser coloration of metals in visual art and design. Opt Mater Express, 9, 1310-1319(2019).

    [28] C Ríos, P Hosseini, RA Taylor et al. Color depth modulation and resolution in phase-change material nanodisplays. Adv Mater, 28, 4720-4726(2016).

    [29] S Yoo, T Gwon, T Eom et al. Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film. ACS Photonics, 3, 1265-1270(2016).

    [30] WL Dong, HL Liu, JK Behera et al. Wide bandgap phase change material tuned visible photonics. Adv Funct Mater, 29, 1806181(2019).

    [31] R Kondrotas, C Chen, J Tang. Sb2S3 solar cells. Joule, 2, 857-878(2018).

    [32] HL Liu, WL Dong, H Wang et al. Rewritable color nanoprints in antimony trisulfide films. Sci Adv, 6, eabb7171(2020).

    [33] XG Luo, D Tsai, M Gu et al. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem Soc Rev, 48, 2458-2494(2019).

    [34] XL Zhu, J Engelberg, S Remennik et al. Resonant laser printing of optical metasurfaces. Nano Lett, 22, 2786-2792(2022).

    [35] SK Chamoli, G Verma, SC Singh et al. Phase change material-based nano-cavity as an efficient optical modulator. Nanotechnology, 32, 095207(2021).

    [36] L Lu, WL Dong, JK Behera et al. Inter-diffusion of plasmonic metals and phase change materials. J Mater Sci, 54, 2814-2823(2019).

    [37] ZY Lin, MH Hong. Femtosecond laser precision engineering: from micron, submicron, to nanoscale. Ultrafast Sci, 2021, 9783514(2021).

    [38] N Ahmed, S Darwish, AM Alahmari. Laser ablation and laser-hybrid ablation processes: a review. Mater Manuf Processes, 31, 1121-1142(2016).

    [39] HG Liu, WX Lin, MH Hong. Surface coloring by laser irradiation of solid substrates. APL Photonics, 4, 051101(2019).

    [40] T Paik, SH Hong, EA Gaulding et al. Solution-processed phase-change VO2 metamaterials from colloidal vanadium oxide (VOX) nanocrystals. ACS Nano, 8, 797-806(2014).

    [41] P Bayliss, W Nowacki. Refinement of the crystal structure of stibnite, Sb2S3. Z Kristallogr Cryst Mater, 135, 308-315(1972).

    [42] CK Kelley. Thermal Analysis Study of Antimony Sulfides(1989).

    [43] TB Massalski. Binary Alloy Phase Diagrams(1990).

    [44] LB Mao, Y Li, GX Li et al. Reversible switching of electromagnetically induced transparency in phase change metasurfaces. Adv Photonics, 2, 056004(2020).

    [45] K Shportko, S Kremers, M Woda et al. Resonant bonding in crystalline phase-change materials. Nat Mater, 7, 653-658(2008).

    [46] P Hosseini, CD Wright, H Bhaskaran. An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 511, 206-211(2014).

    [47] HK Ji, H Tong, H Qian et al. Color printing enabled by phase change materials on paper substrate. AIP Adv, 7, 125024(2017).

    [48] HK Ji, H Tong, H Qian et al. Non-binary colour modulation for display device based on phase change materials. Sci Rep, 6, 39206(2016).

    [49] PG Etchegoin, Ru EC Le, M Meyer. An analytic model for the optical properties of gold. J Chem Phys, 125, 164705(2006).

    [50] Kurdi M El, S David, X Checoury et al. Two-dimensional photonic crystals with pure germanium-on-insulator. Opt Commun, 281, 846-850(2008).

    [51] KT Lee, S Seo, JY Lee et al. Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters. Adv Mater, 26, 6324-6328(2014).

    [52] I Efthimiopoulos, C Buchan, YJ Wang. Structural properties of Sb2S3 under pressure: evidence of an electronic topological transition. Sci Rep, 6, 24246(2016).

    [53] RGA Garcia, CAM Avendaño, M Pal et al. Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: effect of thermal treatment on structural, optical and electrical properties. Mater Sci Semicond Process, 44, 91-100(2016).

    [54] GZ Hou, ZY Wang, HG Ma et al. High-temperature stable plasmonic and cavity resonances in metal nanoparticle-decorated silicon nanopillars for strong broadband absorption in photothermal applications. Nanoscale, 11, 14777-14784(2019).

    [55] ED Palik. Handbook of Optical Constants of Solids(1985).

    [56] ZB Fan, ZK Shao, MY Xie et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys Rev Appl, 10, 014005(2018).

    [57] K Liu, M Lian, KR Qin et al. Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface. Light Adv Manuf, 2, 251-261(2021).

    [58] ZH Ni, HM Wang, J Kasim et al. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett, 7, 2758-2763(2007).

    [59] K Gao, K Du, SM Tian et al. Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation. Adv Funct Mater, 31, 2103327(2021).

    [60] LX Wang, XX Wan, GS Xiao et al. Sequential adaptive estimation for spectral reflectance based on camera responses. Opt Express, 28, 25830-25842(2020).

    [61] ZC Ma, YL Zhang, B Han et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications. Small Methods, 2, 1700413(2018).

    [62] L Qin, YQ Huang, F Xia et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography. Nano Lett, 20, 4916-4923(2020).

    [63] HG Liu, WX Lin, MH Hong. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. Light Sci Appl, 10, 162(2021).

    [64] ZY Lin, LF Ji, MH Hong. Approximately 30 nm nanogroove formation on single crystalline silicon surface under pulsed nanosecond laser irradiation. Nano Lett, 22, 70057010(2022).

    [65] ZC Ma, YL Zhang, B Han et al. Femtosecond laser programmed artificial musculoskeletal systems. Nat Commun, 11, 4536(2020).

    [66] ZY Lin, HG Liu, LF Ji et al. Realization of ~10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett, 20, 4947-4952(2020).

    [67] HT Wang, CL Hao, H Lin et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv, 4, 200031(2021).

    Kuan Liu, Zhenyuan Lin, Bing Han, Minghui Hong, Tun Cao. Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators[J]. Opto-Electronic Advances, 2024, 7(1): 230033
    Download Citation