• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516005 (2021)
Songbin Liu, Long Yan, Jinshu Huang, and Bo Zhou*
Author Affiliations
  • State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou , Guangdong 510641, China
  • show less
    DOI: 10.3788/LOP202158.1516005 Cite this Article Set citation alerts
    Songbin Liu, Long Yan, Jinshu Huang, Bo Zhou. Nanostructure Design, Multi-Color Manipulation and Application of Orthogonal Upconversion Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516005 Copy Citation Text show less
    References

    [1] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chemical Reviews, 104, 139-173(2004).

    [2] Liu X, Yan C H, Capobianco J A. Photon upconversion nanomaterials[J]. Chemical Society Reviews, 44, 1299-1301(2015).

    [3] Liu S B, Huang J S, Yan L et al. Multiphoton ultraviolet upconversion through selectively controllable energy transfer in confined sensitizing sublattices towards improved solar photocatalysis[J]. Journal of Materials Chemistry A, 9, 4007-4017(2021).

    [4] Wilhelm S. Perspectives for upconverting nanoparticles[J]. ACS Nano, 11, 10644-10653(2017).

    [5] Zheng W, Huang P, Tu D T et al. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection[J]. Chemical Society Reviews, 44, 1379-1415(2015).

    [6] Zheng K Z, Loh K Y, Wang Y et al. Recent advances in upconversion nanocrystals: expanding the kaleidoscopic toolbox for emerging applications[J]. Nano Today, 29, 100797(2019).

    [7] Gai S L, Li C X, Yang P P et al. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications[J]. Chemical Reviews, 114, 2343-2389(2014).

    [8] Bünzli J C G, Piguet C. Taking advantage of luminescent lanthanide ions[J]. Chemical Society Reviews, 34, 1048-1077(2005).

    [9] Chen X, Peng D F, Ju Q et al. Photon upconversion in core-shell nanoparticles[J]. Chemical Society Reviews, 44, 1318-1330(2015).

    [10] Chen G Y, Ågren H, Ohulchanskyy T Y et al. Light upconverting core-shell nanostructures: nanophotonic control for emerging applications[J]. Chemical Society Reviews, 44, 1680-1713(2015).

    [11] Fan Y, Liu L, Zhang F. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures[J]. Nano Today, 25, 68-84(2019).

    [12] Zhou J, Liu Q, Feng W et al. Upconversion luminescent materials: advances and applications[J]. Chemical Reviews, 115, 395-465(2015).

    [13] Zhou B, Shi B Y, Jin D Y et al. Controlling upconversion nanocrystals for emerging applications[J]. Nature Nanotechnology, 10, 924-936(2015).

    [14] Wang F, Deng R R, Wang J et al. Tuning upconversion through energy migration in core-shell nanoparticles[J]. Nature Materials, 10, 968-973(2011).

    [15] Zhou B, Yang W F, Han S Y et al. Photon upconversion through Tb3+-mediated interfacial energy transfer[J]. Advanced Materials, 27, 6208-6212(2015).

    [16] Wang F, Han Y, Lim C S et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping[J]. Nature, 463, 1061-1065(2010).

    [17] Chen B, Wang F. Combating concentration quenching in upconversion nanoparticles[J]. Accounts of Chemical Research, 53, 358-367(2020).

    [18] Liu Y S, Tu D T, Zhu H M et al. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications[J]. Chemical Society Reviews, 42, 6924-6958(2013).

    [19] All A H, Zeng X, Teh D B L et al. Expanding the toolbox of upconversion nanoparticles for in vivo optogenetics and neuromodulation[J]. Advanced Materials, 31, 1803474(2019).

    [20] Chen S, Weitemier A Z, Zeng X et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics[J]. Science, 359, 679-684(2018).

    [21] Xie Y L, Shen B, Zhou B S et al. Progress in research on rare-earth upconversion luminescent nanomaterials and bio-sensing[J]. Chinese Journal of Lasers, 47, 0207017(2020).

    [22] Li H, Cui Z Z, Chen W Q et al. Research progress on rare earth doped fluoride multiband upconversion laser[J]. Laser & Optoelectronics Progress, 57, 071601(2020).

    [23] Zhang Z M, Shikha S, Liu J L et al. Upconversion nanoprobes: recent advances in sensing applications[J]. Analytical Chemistry, 91, 548-568(2019).

    [24] Li X M, Guo Z Z, Zhao T C et al. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence[J]. Angewandte Chemie International Edition, 55, 2464-2469(2016).

    [25] Zhang Z, Zhang Y. Orthogonal emissive upconversion nanoparticles: material design and applications[J]. Small, 17, 2004552(2021).

    [26] Dong H, Sun L D, Feng W et al. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence[J]. ACS Nano, 11, 3289-3297(2017).

    [27] Wen H L, Zhu H, Chen X et al. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles[J]. Angewandte Chemie International Edition, 52, 13419-13423(2013).

    [28] Deng R R, Qin F, Chen R F et al. Temporal full-colour tuning through non-steady-state upconversion[J]. Nature Nanotechnology, 10, 237-242(2015).

    [29] Wu M, Yan L, Wang T et al. Controlling red color-based multicolor upconversion through selective photon blocking[J]. Advanced Functional Materials, 29, 1804160(2019).

    [30] Yin X M, Wang H, Tian Y et al. Three primary color emissions from single multilayered nanocrystals[J]. Nanoscale, 10, 9673-9678(2018).

    [31] Zhou B, Yan L, Huang J S et al. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice[J]. Nature Photonics, 14, 760-766(2020).

    [32] Zheng K Z, Han S Y, Zeng X et al. Rewritable optical memory through high-registry orthogonal upconversion[J]. Advanced Materials, 30, 1801726(2018).

    [33] Huang B R, Wu Q S, Peng X Y et al. One-scan fluorescence emission difference nanoscopy developed with excitation orthogonalized upconversion nanoparticles[J]. Nanoscale, 10, 21025-21030(2018).

    [34] Li W, Chen Z W, Zhou L et al. Noninvasive and reversible cell adhesion and detachment via single-wavelength near-infrared laser mediated photoisomerization[J]. Journal of the American Chemical Society, 137, 8199-8205(2015).

    [35] Lai J P, Zhang Y X, Pasquale N et al. An upconversion nanoparticle with orthogonal emissions using dual NIR excitations for controlled two-way photoswitching[J]. Angewandte Chemie International Edition, 53, 14419-14423(2014).

    [36] Zuo J, Tu L P, Li Q Q et al. Near infrared light sensitive ultraviolet-blue nanophotoswitch for imaging-guided “off-on” therapy[J]. ACS Nano, 12, 3217-3225(2018).

    [37] Di Z H, Liu B, Zhao J et al. An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment[J]. Science Advances, 6, eaba9381(2020).

    [38] Zhang Z, Jayakumar M K G, Zheng X et al. Upconversion superballs for programmable photoactivation of therapeutics[J]. Nature Communications, 10, 4586(2019).

    [39] Huang J S, Yan L, Liu S B et al. Core-shell nanostructures: dynamic control of orthogonal upconversion in migratory core-shell nanostructure toward information security[J]. Advanced Functional Materials, 31, 2170096(2021).

    [40] Liu S B, Yan L, Li Q Q et al. Tri-channel photon emission of lanthanides in lithium-sublattice core-shell nanostructures for multiple anti-counterfeiting[J]. Chemical Engineering Journal, 397, 125451(2020).

    [41] Wang L, Dong H, Li Y N et al. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer[J]. Advanced Materials, 27, 2065-2069(2015).

    [42] Mei Q, Bansal A, Jayakumar M K G et al. Manipulating energy migration within single lanthanide activator for switchable upconversion emissions towards bidirectional photoactivation[J]. Nature Communications, 10, 4416(2019).

    [43] Lei Z D, Ling X, Mei Q S et al. An excitation navigating energy migration of lanthanide ions in upconversion nanoparticles[J]. Advanced Materials, 32, 1906225(2020).

    [44] Tang M, Zhu X H, Zhang Y H et al. Near-infrared excited orthogonal emissive upconversion nanoparticles for imaging-guided on-demand therapy[J]. ACS Nano, 13, 10405-10418(2019).

    [45] Zhang Z, Jayakumar M K G, Shikha S et al. Modularly assembled upconversion nanoparticles for orthogonally controlled cell imaging and drug delivery[J]. ACS Applied Materials & Interfaces, 12, 12549-12556(2020).

    [46] Ding M Y, Dong B, Lu Y et al. Energy manipulation in lanthanide-doped core-shell nanoparticles for tunable dual-mode luminescence toward advanced anti-counterfeiting[J]. Advanced Materials, 32, 2002121(2020).

    [47] Wang P Y, Li X M, Yao C et al. Orthogonal near-infrared upconversion co-regulated site-specific O2 delivery and photodynamic therapy for hypoxia tumor by using red blood cell microcarriers[J]. Biomaterials, 125, 90-100(2017).

    [48] Li X M, Wang R, Zhang F et al. Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm[J]. Scientific Reports, 3, 3536(2013).

    [49] Wang L, Dong H, Li Y N et al. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles[J]. Journal of the American Chemical Society, 136, 4480-4483(2014).

    [50] Boyer J C, Carling C J, Gates B D et al. Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity[J]. Journal of the American Chemical Society, 132, 15766-15772(2010).

    [51] Huang H, Chen J K, Liu Y T et al. Lanthanide-doped core@multishell nanoarchitectures: multimodal excitable upconverting/downshifting luminescence and high-level anti-counterfeiting[J]. Small, 16, 2000708(2020).

    [52] Leng Z H, Li L P, Zhang D et al. Tunable green/red dual-mode luminescence via energy management in core-multishell nanoparticles[J]. Materials & Design, 152, 119-128(2018).

    [53] Ding M Y, Chen D Q, Wan Z Y et al. Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core-shell nanoarchitecture[J]. Journal of Materials Chemistry C, 3, 5372-5376(2015).

    [54] Liu J, Rijckaert H, Zeng M et al. Simultaneously excited downshifting/upconversion luminescence from lanthanide-doped core/shell fluoride nanoparticles for multimode anticounterfeiting[J]. Advanced Functional Materials, 28, 1707365(2018).

    [55] Huang X Y. Realizing efficient upconversion and down-shifting dual-mode luminescence in lanthanide-doped NaGdF4 core-shell-shell nanoparticles through gadolinium sublattice-mediated energy migration[J]. Dyes and Pigments, 130, 99-105(2016).

    [56] Ju D D, Song F, Khan A et al. Simultaneous dual-mode emission and tunable multicolor in the time domain from lanthanide-doped core-shell microcrystals[J]. Nanomaterials, 8, 1023(2018).

    [57] Cheng X W, Pan Y, Yuan Z et al. Er3+ sensitized photon upconversion nanocrystals[J]. Advanced Functional Materials, 28, 1800208(2018).

    [58] Chen Q S, Xie X J, Huang B L et al. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping[J]. Angewandte Chemie, 56, 7605-7609(2017).

    [59] Yan L, Zhou B, Song N et al. Self-sensitization induced upconversion of Er3+ in core-shell nanoparticles[J]. Nanoscale, 10, 17949-17957(2018).

    [60] Chen Y J, Lin Y F, Huang J H et al. Research progress in 1550-nm all-solid-state lasers based on Er3+-doped crystals[J]. Chinese Journal of Lasers, 47, 0500018(2020).

    [61] Li X M, Shen D K, Yang J P et al. Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties[J]. Chemistry of Materials, 25, 106-112(2013).

    [62] Wang Y, Zheng K Z, Song S Y et al. Remote manipulation of upconversion luminescence[J]. Chemical Society Reviews, 47, 6473-6485(2018).

    [63] Wu Y M, Ang M J Y, Sun M Z et al. Expanding the toolbox for lanthanide-doped upconversion nanocrystals[J]. Journal of Physics D: Applied Physics, 52, 383002(2019).

    [64] Zhou B, Tao L L, Chai Y et al. Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure[J]. Angewandte Chemie International Edition, 55, 12356-12360(2016).

    [65] Zhou B, Li Q Q, Yan L et al. Controlling upconversion through interfacial energy transfer (IET): fundamentals and applications[J]. Journal of Rare Earths, 38, 474-482(2020).

    [66] Wen S H, Zhou J J, Zheng K Z et al. Advances in highly doped upconversion nanoparticles[J]. Nature Communications, 9, 2415(2018).

    [67] Chen B, Wang F. Emerging frontiers of upconversion nanoparticles[J]. Trends in Chemistry, 2, 427-439(2020).

    [68] Liu Y J, Lu Y Q, Yang X S et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J]. Nature, 543, 229-233(2017).

    Songbin Liu, Long Yan, Jinshu Huang, Bo Zhou. Nanostructure Design, Multi-Color Manipulation and Application of Orthogonal Upconversion Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516005
    Download Citation