• Chinese Optics Letters
  • Vol. 22, Issue 3, 032501 (2024)
James Garofolo and Ben Wu*
Author Affiliations
  • Department of Electrical and Computer Engineering, Rowan University, Glassboro, NJ 08028, USA
  • show less
    DOI: 10.3788/COL202422.032501 Cite this Article Set citation alerts
    James Garofolo, Ben Wu. Photonic analog signal processing and neuromorphic computing [Invited][J]. Chinese Optics Letters, 2024, 22(3): 032501 Copy Citation Text show less
    References

    [1] G. P. Agrawal. Fiber-Optic Communication Systems(2010).

    [2] A. N. Tait, T. F. de Lima, P. Y. Ma et al. Blind source separation in the physical layer. Proceedings of 2018 52nd Annual Conference on Information Sciences and Systems (CISS), 1(2018).

    [3] A. N. Tait, P. Y. Ma, T. F. de Lima et al. Demonstration of multivariate photonics: blind dimensionality reduction with integrated photonics. J. Lightwave Technol., 37, 5996(2019).

    [4] T. Shi, Y. Qi, B. Wu. Hybrid free space optical communication and radio frequency mimo system for photonic interference separation. IEEE Photon. Technol. Lett., 34, 149(2022).

    [5] T. Shi, Y. Qi, J. Garofolo et al. Alignment simplified free space optical communication for radio spectrum coexistence. Proceedings of Frontiers in Optics + Laser Science 2022 (FIO, LS), JW5A.43(2022).

    [6] M. P. Fok, P. R. Prucnal. Compact and low-latency scheme for optical steganography using chirped fibre Bragg gratings. Electron. Lett., 45, 179(2009).

    [7] Z. Wang, P. R. Prucnal. Optical steganography over a public DPSK channel with asynchronous detection. IEEE Photon. Technol. Lett., 23, 48(2011).

    [8] K. Kravtsov, B. Wu, I. Glesk et al. Stealth transmission over a WDM network with detection based on an all-optical thresholder. Proceedings of IEEE/LEOS Annual Meeting, 480(2007).

    [9] B. Wu, Z. Wang, Y. Tian et al. Optical steganography based on amplified spontaneous emission noise. Opt. Express, 21, 2065(2013).

    [10] B. Wu, Z. Wang, B. J. Shastri et al. Two dimensional encrypted optical steganography based on amplified spontaneous emission noise. CLEO: 2013, AF1H.5(2013).

    [11] B. Wu, Z. Wang, B. J. Shastri et al. Phase-mask covered optical steganography based on amplified spontaneous emission noise. IEEE Photonics Conference, 137(2013).

    [12] B. Wu, B. J. Shastri, P. R. Prucnal. System performance measurement and analysis of optical steganography based on noise. IEEE Photon. Technol. Lett., 26, 1920(2014).

    [13] C. Huang, S. Fujisawa, T. F. De Lima et al. Demonstration of photonic neural network for fiber nonlinearity compensation in long-haul transmission systems. Optical Fiber Communications Conference and Exhibition (OFC), 1(2020).

    [14] D. Rosenbluth, K. Kravtsov, M. P. Fok et al. A high performance photonic pulse processing device. Opt. Express, 17, 22767(2009).

    [15] P. R. Prucnal, B. J. Shastri. Neuromorphic Photonics(2017).

    [16] A. N. Tait, M. A. Nahmias, Y. Tian et al. Photonic neuromorphic signal processing and computing. Nanophotonic Information Physics: Nano-Optics and Nanophotonics, 183(2014).

    [17] A. N. Tait, M. A. Nahmias, B. J. Shastri et al. Balanced WDM weight banks for analog optical processing and networking in silicon. Proceedings of IEEE Summer Topicals Meeting Series (SUM), 110(2015).

    [18] M. J. Filipovich, Z. Guo, B. A. Marquez et al. Training deep neural networks in situ with neuromorphic photonics. Proceedings of IEEE Photonics Conference (IPC), 1(2020).

    [19] V. Bangari, B. A. Marquez, H. Miller et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs). IEEE J. Sel. Top. Quantum Electron., 26, 7701213(2020).

    [20] S. Xu, J. Wang, W. Zou. Optical patching scheme for optical convolutional neural networks based on wavelength-division multiplexing and optical delay lines. Opt. Lett., 45, 3689(2020).

    [21] S. Xu, J. Wang, W. Zou. Optical convolutional neural network with WDM-based optical patching and microring weighting banks. IEEE Photon. Technol. Lett., 33, 89(2021).

    [22] I. Chakraborty, G. Saha, K. Roy. Photonic in-memory computing primitive for spiking neural networks using phase-change materials. Phys. Rev. Appl., 11, 014063(2019).

    [23] J. Feldmann, N. Youngblood, C. D. Wright et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208(2019).

    [24] J. Feldmann, N. Youngblood, M. Karpov et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52(2021).

    [25] L. W. Couch. Digital and Analog Communication Systems(2013).

    [26] W. Wells, R. Stone, E. Miles. Secure communication by optical homodyne. IEEE J. Sel. Areas Commun., 11, 770(1993).

    [27] B. J. Shastri, M. A. Nahmias, A. N. Tait et al. Exploring excitability in graphene for spike processing networks. 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 83(2013).

    [28] A. N. Tait, T. F. de Lima, M. A. Nahmias et al. Silicon photonic modulator neuron. Phys. Rev. Appl., 11, 064043(2019).

    [29] J. Garofolo, Y. Qi, T. Shi et al. Jamming-resilient LiDAR based on photonic blind-source separation. Proceedings of Frontiers in Optics + Laser Science 2022 (FIO, LS), JW5A.47(2022).

    [30] J. Garofolo, Y. Qi, T. Shi et al. Photonic interference cancellation for LiDAR sensors. IEEE Photon. Technol. Lett., 35, 1279(2023).

    [31] C. Jutten, J. Herault. Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process., 24, 1(1991).

    [32] T. Shi, Y. Qi, W. Zhang et al. Sub-Nyquist optical pulse sampling for photonic blind source separation. Opt. Express, 30, 19300(2022).

    [33] D. Wang, B. Wang, C. Huang. Combining photonic blind source separation and genetic algorithm for mode-division-multiplexed fiber communications. IEEE Region 10 Conference (TENCON), 1(2022).

    [34] C. Ríos, M. Stegmaier, P. Hosseini et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics, 9, 725(2015).

    [35] J. K. George, A. Mehrabian, R. Amin et al. Neuromorphic photonics with electro-absorption modulators. Opt. Express, 27, 5181(2019).

    [36] T. F. De Lima, A. N. Tait, H. Saeidi et al. Noise analysis of photonic modulator neurons. IEEE J. Sel. Top. Quantum Electron., 26, 7600109(2020).

    [37] B. J. Shastri, A. N. Tait, M. A. Nahmias et al. Spatiotemporal pattern recognition with cascadable graphene excitable lasers. IEEE Photonics Conference, 573(2014).

    [38] J.-T. Chien. Source Separation and Machine Learning(2019).

    [39] E. Biglieri, R. Calderbank, A. Constantinides et al. MIMO Wireless Communications(2007).

    [40] J. Nocedal, S. J. Wright. Numerical Optimization(2006).

    [41] K. Pearson. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci., 2, 559(1901).

    [42] Y. Qi, T. Shi, B. Wu. Wideband mixed signal separation based on photonic signal processing. Telecom, 2, 413(2021).

    [43] W. Zhang, C. Huang, H.-T. Peng et al. Silicon microring synapses enable photonic deep learning beyond 9-bit precision. Optica, 9, 579(2022).

    [44] W. Zhang, A. N. Tait, C. Huang et al. Broadband physical layer cognitive radio with an integrated photonic processor for blind source separation. Nat. Commun., 14, 1107(2023).

    [45] C. Huang, D. Wang, W. Zhang et al. High-capacity space-division multiplexing communications with silicon photonic blind source separation. J. Lightwave Technol., 40, 1617(2022).

    [46] W. H. Salim, B. R. Mahdi, A. A. Dhaigham. Data security inside optical communication networks through encoding and steganography. J. Phys.: Conf. Ser., 1660, 012056(2020).

    [47] L. Larger, J. P. Goedgebuer. Encryption using chaotic dynamics for optical telecommunications. Comptes Rendus Phys., 5, 609(2004).

    [48] Y. Qi, J. Li, C. Wei et al. Free-space optical stealth communication based on wide-band spontaneous emission. Opt. Contin., 1, 2298(2022).

    [49] G. Yun, M. Kavehrad. Spot-diffusing and fly-eye receivers for indoor infrared wireless communications. IEEE International Conference on Selected Topics in Wireless Communications, 262(1992).

    [50] H. Hass, L. Yin, Y. Wang et al. What is Lifi?. J. Lightwave Technol., 34, 1533(2016).

    [51] Q. Yu, Z. Zhao, L. Deng et al. Secure optical communication system based on ASE noise with no need for key distribution. Proceedings of 10th International Conference on Advanced Infocomm Technology (ICAIT), 47(2018).

    [52] A. Argyris, D. Syvridis, L. Larger et al. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438, 343(2005).

    [53] Y. Fu, M. Cheng, X. Jiang et al. High-speed optical secure communication with an external noise source and an internal time-delayed feedback loop. Photonics Res., 7, 1306(2019).

    [54] E. Wohlgemuth, Y. Yoffe, P. N. Goki et al. Stealth and secured optical coherent transmission using a gain switched frequency comb and multi-homodyne coherent detection. Opt. Express, 29, 40462(2021).

    [55] W. Shao, M. Cheng, L. Deng et al. Neural-network-enabled optical steganography based on bias tuning of electro-optical modulator. Proceedings of 2022 IEEE 14th International Conference on Advanced Infocomm Technology (ICAIT), 94(2022).

    [56] A. N. Tait, T. F. De Lima, M. A. Nahmias et al. Continuous calibration of microring weights for analog optical networks. IEEE Photon. Technol. Lett., 28, 887(2016).

    [57] A. N. Tait, A. X. Wu, T. F. de Lima et al. Microring weight banks. IEEE J. Sel. Top. Quantum Electron., 22, 312(2016).

    [58] L. Deng. The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag., 29, 141(2012).

    [59] J. Garofolo, B. Wu. All-analog current repeater for scalable photonic neural networks. Proceedings of Frontiers in Optics + Laser Science 2022, JW5A.30(2022).

    [60] Z. Fang, R. Chen, J. Zheng et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat. Nanotechnol., 17, 842(2022).

    [61] Y. Li, K. Ang. Hardware implementation of neuromorphic computing using large-scale memristor crossbar arrays. Adv. Intell. Syst., 3, 2000137(2021).

    [62] A. Lugnan, S. Aggarwal, F. Brückerhoff-Plückelmann et al. Performance enhancement via synaptic plasticity in an integrated photonic recurrent neural network with phase-change materials. Proceedings of 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, jsiii_3_5(2023).

    [63] B. A. Marquez, J. Singh, H. Morison et al. Fully-integrated photonic tensor core for image convolutions. Nanotechnology, 34, 395201(2023).

    [64] K. Padmaraju, J. Chan, L. Chen et al. Thermal stabilization of a microring modulator using feedback control. Opt. Express, 20, 27999(2012).

    [65] A. N. Tait, T. F. de Lima, M. A. Nahmias et al. Multi-channel control for microring weight banks. Opt. Express, 24, 8895(2016).

    [66] D. Kuzum, R. G. D. Jeyasingh, B. Lee et al. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett., 12, 2179(2012).

    [67] H. Y. Cheng, M. BrightSky, S. Raoux et al. Atomic-level engineering of phase change material for novel fast-switching and high-endurance PCM for storage class memory application. IEEE International Electron Devices Meeting, 30.6.1(2013).

    [68] H. Xiao, K. Rasul, R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms(2017).

    [69] Y. Jiang, W. Zhang, X. Liu et al. Physical aware clustering training method for integrated photonic convolution neural network with nonlinear distributed weights. Proceedings of 2022 Asia Communications and Photonics Conference (ACP), 1844(2022).

    [70] R. Wang, P. Wang, C. Lyu et al. Photonic binary convolutional neural network based on microring resonator array. IEEE Photon. Technol. Lett., 35, 664(2023).

    [71] E. Paolini, L. De Marinis, L. Maggiani et al. Accelerating pooling layers in photonic convolutional neural networks. 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), 1(2022).

    [72] F. Ashtiani, M. B. On, D. Sanchez-Jacome et al. Photonic max-pooling for deep neural networks using a programmable photonic platform. Optical Fiber Communications Conference and Exhibition (OFC), M1J.6(2023).

    James Garofolo, Ben Wu. Photonic analog signal processing and neuromorphic computing [Invited][J]. Chinese Optics Letters, 2024, 22(3): 032501
    Download Citation