• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 231401 (2020)
Xinjun Wang and Yingliang Yan*
Author Affiliations
  • Beijing Aerospace Propulsion Institute, Beijing 100076, China
  • show less
    DOI: 10.3788/LOP57.231401 Cite this Article Set citation alerts
    Xinjun Wang, Yingliang Yan. Microstructure and Properties of Laser Cladding 316L Stainless Steel Coating Assisted by Magnetic Field[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231401 Copy Citation Text show less
    References

    [1] Cai Y C, Luo Z, Feng M N et al. The effect of TiC/Al2O3 composite ceramic reinforcement on tribological behavior of laser cladding Ni60 alloys coatings[J]. Surface and Coatings Technology, 291, 222-229(2016).

    [2] Li Y H, Gao S Y. Surface enhanced 316L/SiC nano-composite coatings via laser cladding and following cold-swaging process[J]. Applied Physics A, 123, 660(2017). http://link.springer.com/10.1007/s00339-017-1275-9

    [3] Li H C, Wang D G, Chen C Z et al. Phase composition, microstructure and in vitro bioactivity of laser cladding CaO-ZrO2-SiO2 system coatings on titanium alloy[J]. Materials Letters, 157, 139-142(2015). http://www.sciencedirect.com/science/article/pii/S0167577X15007831

    [4] Chew Y. Pang J H L, Bi G J, et al. Effects of laser cladding on fatigue performance of AISI 4340 steel in the as-clad and machine treated conditions[J]. Journal of Materials Processing Technology, 243, 246-257(2017).

    [5] Duan X X, Gao S Y, Dong Q et al. Reinforcement mechanism and wear resistance of Al2O3/Fe-Cr-Mo steel composite coating produced by laser cladding[J]. Surface and Coatings Technology, 291, 230-238(2016).

    [6] Zhou S F, Xu Y B, Liao B Q et al. Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding[J]. Optics & Laser Technology, 103, 8-16(2018).

    [7] Liu J L, Yu H J, Chen C Z et al. Research and development status of laser cladding on magnesium alloys: a review[J]. Optics and Lasers in Engineering, 93, 195-210(2017).

    [8] Tse H C, Man H C, Yue T M. Effect of electric and magnetic fields on plasma control during CO2 laser welding[J]. Optics and Lasers in Engineering, 32, 55-63(1999).

    [9] Lu Y, Sun G F, Wen D P et al. Effects of applying electric and magnetic fields on laser drilling[J]. The International Journal of Advanced Manufacturing Technology, 84, 2293-2300(2016). http://link.springer.com/article/10.1007/s00170-015-7842-3

    [10] Lin Y H, Yao J H, Yuan Y et al[J]. Influence of electric-magnetic compound field on crack and microstructure of Ni60 alloy laser cladding coating Electromachining & Mould, 2018, 37-40.

    [11] Shi Y, Chen K M, Liu J et al. Microstructure and properties of composite coatings by magnetic field assisted laser deposition[J]. Chinese Journal of Lasers, 45, 1102009(2018).

    [12] Liu H X, Ji S W, Jiang Y H et al. Microstructure and property of Fe60 composite coatings by rotating magnetic field auxiliary laser cladding[J]. Chinese Journal of Lasers, 40, 0103007(2013).

    [13] Velde O, Gritzki R, Grundmann R. Numerical investigations of Lorentz force influenced Marangoni convection relevant to aluminum surface alloying[J]. International Journal of Heat and Mass Transfer, 44, 2751-2762(2001).

    [14] Dennis B H, Dulikravich G S. Magnetic field suppression of melt flow in crystal growth[J]. International Journal of Heat and Fluid Flow, 23, 269-277(2002).

    [15] Zhang N, Liu W W, Deng D W et al. Effect of electric-magnetic compound field on the pore distribution in laser cladding process[J]. Optics & Laser Technology, 108, 247-254(2018).

    [16] Li Y, Cui X F, Jin G et al. Influence of magnetic field on microstructure and properties of TiC/cobalt-based composite plasma cladding coating[J]. Surface and Coatings Technology, 325, 555-564(2017).

    [17] Wang L, Hu Y, Song S Y et al. Suppression effect of a steady magnetic field on surface undulation during laser remelting[J]. Chinese Journal of Lasers, 42, 1103005(2015).

    [18] Kou S. Welding metallurgy[M]. Hoboken: John Wiley & Sons(1987).

    [19] Kern M, Berger P, Hügel H. Magneto-fluid dynamic control of seam quality in CO2 laser beam welding[J]. Welding Journal, 79, 72-78(2000).

    [20] Zhu H M, Hu W F, Li Y Z et al. Effect of tempering temperature on microstructure and properties of laser-cladded Martensitic stainless steel layer[J]. Chinese Journal of Lasers, 46, 1202001(2019).

    [21] Yi W, Chen H, Wu Y et al. Effect of in situ NbC on microstructure and wear properties of laser cladding Co-based coatings[J]. Chinese Journal of Lasers, 47, 0302010(2020).

    [22] Xu J L, Zhou J Z, Tan W S et al. Thermal corrosion resistance of Co-based alloy coatings by laser cladding assisted by electromagnetic stirring[J]. Acta Optica Sinica, 39, 0114002(2019).

    Xinjun Wang, Yingliang Yan. Microstructure and Properties of Laser Cladding 316L Stainless Steel Coating Assisted by Magnetic Field[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231401
    Download Citation