• Infrared and Laser Engineering
  • Vol. 51, Issue 3, 20220152 (2022)
Zhen Yang, Yuefeng Wang, Huimin Jin, Zhiyuan Wang, Peipeng Xu*, Wei Zhang, Weiwei Chen, and Shixun Dai
Author Affiliations
  • Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
  • show less
    DOI: 10.3788/IRLA20220152 Cite this Article
    Zhen Yang, Yuefeng Wang, Huimin Jin, Zhiyuan Wang, Peipeng Xu, Wei Zhang, Weiwei Chen, Shixun Dai. Review of chalcogenide glass integrated photonic devices (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220152 Copy Citation Text show less
    References

    [1] S E Miller. Integrated optics: An introduction. The Bell System Technical Journal, 48, 2059-2069(1969).

    [2] A Jenkins. The road to nanophotonics. Nature Photonics, 2, 258-260(2008).

    [3] B Jalali, S Fathpour. Silicon photonics. Journal of Lightwave Technology, 24, 4600-4615(2006).

    [4] R G Hunsperger, J R Meyer-Arendt. Integrated optics: Theory and technology. Applied Optics, 31, 298(1992).

    [5] L Eldada, L W Shacklette. Advances in polymer integrated optics. IEEE Journal of Selected Topics in Quantum Electronics, 6, 54-68(2000).

    [6] A Boes, B Corcoran, L Chang, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser & Photonics Reviews, 12, 1700256(2018).

    [7] H Ma, A Y Jen, L R Dalton. Polymer‐based optical waveguides: Materials, processing, and devices. Advanced Materials, 14, 1339-1365(2002).

    [8] M Kawachi. Silica waveguides on silicon and their application to integrated-optic components. Optical and Quantum Electronics, 22, 391-416(1990).

    [9] G Roelkens, L Liu, D Liang, et al. III-V/silicon photonics for on‐chip and intra-chip optical interconnects. Laser & Photonics Reviews, 4, 751-779(2010).

    [10] Chrostowski L, Hochberg M. Silicon Photonics Design: From Devices to Systems [M]. Cambridge: Cambridge University Press, 2015.

    [11] C Wang, M Zhang, X Chen, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [12] Y Hida, H Onose, S Imamura. Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm. IEEE Photonics Technology Letters, 5, 782-784(1993).

    [13] He Sailing, Dai Daoxin. MicroNano Photonic Integration [M]. Beijing: Science Press, 2010. (in Chinese)

    [14] Cai Chun. Study on ⅲⅴ group semiconduct MQW planar waveguide optical device[D]. Nanjing: Southeast University, 2004. (in Chinese)

    [15] J Leuthold, C Koos, W Freude. Nonlinear silicon photonics. Nature Photonics, 4, 535-544(2010).

    [16] Q Liu, J M Ramirez, V Vakarin, et al. On-chip Bragg grating waveguides and Fabry-Perot resonators for long-wave infrared operation up to 8.4 µm. Optics Express, 26, 34366-34372(2018).

    [17] M Long, A Gao, P Wang, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Science Advances, 3, e1700589(2017).

    [18] Jian Jialing, Ye Yuting, Li Junying, et al. Recent progress of micronano photonic devices based on chalcogenide glasses[J]. Journal of The Chinese Ceramic Society, 2021, 49(12): 2676. (in Chinese)

    [19] J F Viens, C Meneghini, A Villeneuve, et al. Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses. Journal of Lightwave Technology, 17, 1184(1999).

    [20] M R Krogstad, S Ahn, W Park, et al. Optical characterization of chalcogenide Ge–Sb–Se waveguides at telecom wavelengths. IEEE Photonics Technology Letters, 28, 2720-2723(2016).

    [21] T Han, S Madden, D Bulla, et al. Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography. Optics Express, 18, 19286-19291(2010).

    [22] H Lin, L Li, Y Zou, et al. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. Optics Letters, 38, 1470-1472(2013).

    [23] T Sabapathy, A Ayiriveetil, A K Kar, et al. Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass. Optical Materials Express, 2, 1556-1561(2012).

    [24] S Madden, D Y Choi, D Bulla, et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Optics Express, 15, 14414-14421(2007).

    [25] J Hu, N N Feng, N Carlie, et al. Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow. Optics Express, 18, 1469-1478(2010).

    [26] P Jean, A Douaud, V Michaud-Belleau, et al. Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides. Optics Letters, 45, 2830-2833(2020).

    [27] P Jean, A Douaud, S T Bah, et al. Universal micro-trench resonators for monolithic integration with silicon waveguides. Optical Materials Express, 11, 2753-2767(2021).

    [28] D G Kim, S Han, J Hwang, et al. Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nature Communications, 11, 1-7(2020).

    [29] J Hwang, D-G Kim, S Han, et al. Supercontinuum generation in As2S3 waveguides fabricated without direct etching. Optics Letters, 46, 2413-2416(2021).

    [30] B Zhang, P Zeng, Z Yang, et al. On-chip chalcogenide microresonators with low-threshold parametric oscillation. Photonics Research, 9, 1272-1279(2021).

    [31] X Gai, S Madden, D Y Choi, et al. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1 m−1 at 1550 nm. Optics Express, 18, 18866-18874(2010).

    [32] X Gai, D Y Choi, S Madden, et al. Polarization-independent chalcogenide glass nanowires with anomalous dispersion for all-optical processing. Optics Express, 20, 13513-13521(2012).

    [33] Y Zhu, L Wan, Z Chen, et al. Effects of shallow suspension in low-loss waveguide-integrated chalcogenide microdisk resonators. Journal of Lightwave Technology, 38, 4817-4823(2020).

    [34] J Hu, V Tarasov, N Carlie, et al. Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films. Optical Materials, 30, 1560-1566(2008).

    [35] Q Du, Y Huang, J Li, et al. Low-loss photonic device in Ge–Sb–S chalcogenide glass. Optics Letters, 41, 3090-3093(2016).

    [36] Huang Y, Xia D, Zeng P, et al. Engineered raman lasing in photonic integrated chalcogenide micresonats [J]. arXiv preprint arXiv, 2021: 210711719.

    [37] R Zhang, Z Yang, M Zhao, et al. High quality, high index-contrast chalcogenide microdisk resonators. Optics Express, 29, 17775-17783(2021).

    [38] Z Yang, R Zhang, Z Wang, et al. High-Q, submicron-confined chalcogenide microring resonators. Optics Express, 29, 33225-33233(2021).

    [39] Q Du, Z Luo, H Zhong, et al. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photonics Research, 6, 506-510(2018).

    [40] M Grayson, M Zohrabi, K Bae, et al. Enhancement of third-order nonlinearity of thermally evaporated GeSbSe waveguides through annealing. Optics Express, 27, 33606(2019).

    [41] N S Abdel-Moneim, C J Mellor, T M Benson, et al. Fabrication of stable, low optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip. Optical and Quantum Electronics, 47, 351-361(2015).

    [42] A L Gaeta, M Lipson, T J Kippenberg. Photonic-chip-based frequency combs. Nature Photonics, 13, 158-169(2019).

    [43] H Shang, M Zhang, D Sun, et al. Optical characterization of Ge11.5As24S64.5 glass for an on-chip supercontinuum. Applied Optics, 60, 5451-5455(2021).

    [44] Zeng P, Xia D, Yang Z, et al. HighQ GeAsS Micring Resonats based on improved fabrication process f optical parametric amplifier [C]Proceedings of the CLEO: Applications Technology, 2020.

    [45] Chiles J, Malinowski M, Rao A, et al. Lowloss, submicron chalcogenide integrated photonics with chline plasma etching[J]. Applied Physics Letters, 2015, 106(11): 111110.

    [46] D Xia, Y Huang, B Zhang, et al. Engineered Raman lasing in photonic integrated chalcogenide microresonators. Laser & Photonics Reviews, 2100443(2022).

    [47] X Gai, D Y Choi, S Madden, et al. Supercontinuum generation in the mid-infrared from a dispersion-engineered As 2 S 3 glass rib waveguide. Optics Letters, 37, 3870-3872(2012).

    [48] P Ma, D Y Choi, Y Yu, et al. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Optics Express, 21, 29927-29937(2013).

    [49] P Ma, D Y Choi, Y Yu, et al. High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing. Optics Express, 23, 19969-19979(2015).

    [50] W Shen, P Zeng, Z Yang, et al. Chalcogenide glass photonic integration for improved 2 μm optical interconnection. Photonics Research, 8, 1484-1490(2020).

    [51] Lin H, Zou Y, Danto S, et al. infrared As2Se3 chalcogenide glassonsilicon waveguides [C]Proceedings of the The 9th International Conference on Group IV Photonics (GFP), IEEE, 2012.

    [52] Y Yu, X Gai, P Ma, et al. Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide. Optics Letters, 41, 958-961(2016).

    [53] Lin H, Xiang Y, Li L, et al. HighQ infrared chalcogenide glass resonats f chemical sensing [C]Proceedings of the 2014 IEEE Photonics Society Summer Topical Meeting Series, IEEE, 2014.

    [54] Z Han, P Lin, V Singh, et al. On-chip mid-infrared gas detection using chalcogenide glass waveguide. Applied Physics Letters, 108, 141106(2016).

    [55] P Su, Z Han, D Kita, et al. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector. Applied Physics Letters, 114, 051103(2019).

    [56] M Pi, C Zheng, H Zhao, et al. Mid-infrared ChG-on-MgF2 waveguide gas sensor based on wavelength modulation spectroscopy. Optics Letters, 46, 4797-4800(2021).

    [57] F Tittel. Environmental trace gas detection using laser spectroscopy. Applied Physics B, 67, 273-273(1998).

    [58] I M Craig, M S Taubman, A S Lea, et al. Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser. Optics Express, 21, 30401-30414(2013).

    [59] M R Robinson, R P Eaton, D M Haaland, et al. Noninvasive glucose monitoring in diabetic patients: A preliminary evaluation. Clinical Chemistry, 38, 1618-1622(1992).

    [60] J Charrier, M-L Brandily, H Lhermite, et al. Evanescent wave optical micro-sensor based on chalcogenide glass. Sensors and Actuators B: Chemical, 173, 468-476(2012).

    [61] A Gutierrez-Arroyo, E Baudet, L Bodiou, et al. Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared. Optics Express, 24, 23109-23117(2016).

    [62] A Gutierrez-Arroyo, E Baudet, L Bodiou, et al. Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared. Sensors and Actuators B: Chemical, 242, 842-848(2017).

    [63] V Mittal, M Nedeljkovic, D J Rowe, et al. Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy. Optics Letters, 43, 2913-2916(2018).

    [64] M Pi, C Zheng, J Ji, et al. Surface-enhanced infrared absorption spectroscopic chalcogenide waveguide sensor using a silver island film. ACS Applied Materials & Interfaces, 13, 32555-32563(2021).

    [65] M Pi, C Zheng, R Bi, et al. Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect. Sensors and Actuators B: Chemical, 297, 126732(2019).

    [66] R Zegadi, N Lorrain, L Bodiou, et al. Enhanced mid-infrared gas absorption spectroscopic detection using chalcogenide or porous germanium waveguides. Journal of Optics, 23, 035102(2021).

    [67] Y Wang, W Chen, P Wang, et al. Ultra-high-power-confinement-factor integrated mid-infrared gas sensor based on the suspended slot chalcogenide glass waveguide. Sensors and Actuators B: Chemical, 347, 130466(2021).

    [68] P Xu, Z Yu, X Shen, et al. High quality factor and high sensitivity chalcogenide 1D photonic crystal microbridge cavity for mid-infrared sensing. Optics Communications, 382, 361-365(2017).

    [69] V Nalivaiko, M Ponomareva. Optical grating waveguide sensors based оn chalcogenide glasses. Optics and Spectroscopy, 126, 439-442(2019).

    [70] W Huang, Y Luo, W Zhang, et al. High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator. Infrared Physics & Technology, 103792(2021).

    [71] X Zhang, C Zhou, Y Luo, et al. High Q-factor, ultrasensitivity slot microring resonator sensor based on chalcogenide glasses. Optics Express, 30, 3866-3875(2022).

    [72] M R Lamont, B Luther-Davies, D Y Choi, et al. Supercontinuum generation in dispersion engineered highly nonlinear (γ=10/W/m) As2S3 chalcogenide planar waveguide. Optics Express, 16, 14938-14944(2008).

    [73] Yeom D I, Mägi E C, Lamont M R, et al. Lowthreshold supercontinuum generation in highly nonlinear chalcogenide nanowires [J]. Optics Letters, 2008, 33(7): 660662.

    [74] Karim M, Rahman B, Agrawal G P. Dispersion engineered Ge11.5As24Se64.5 nanowire f supercontinuum generation: A parametric study [J]. Optics Express, 2014, 22(25): 3102931040.

    [75] H Shang, D Sun, M Zhang, et al. On-chip detector based on supercontinuum generation in chalcogenide waveguide. Journal of Lightwave Technology, 39, 3890-3895(2021).

    [76] Y Yu, X Gai, T Wang, et al. Mid-infrared supercontinuum generation in chalcogenides. Optical Materials Express, 3, 1075-1086(2013).

    [77] Y Yu, X Gai, P Ma, et al. A broadband, quasi-continuous, mid‐infrared supercontinuum generated in a chalcogenide glass waveguide. Laser & Photonics Reviews, 8, 792-798(2014).

    [78] D Xia, Y Huang, B Zhang, et al. On-chip broadband mid-infrared supercontinuum generation based on Highly nonlinear chalcogenide glass waveguides. Frontiers in Physics, 9, 93(2021).

    [79] W Qiu, P T Rakich, H Shin, et al. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: A general framework of selection rules and calculating SBS gain. Optics Express, 21, 31402-31419(2013).

    [80] P T Rakich, P Davids, Z Wang. Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces. Optics Express, 18, 14439-14453(2010).

    [81] R Pant, C G Poulton, D Y Choi, et al. On-chip stimulated Brillouin scattering. Optics Express, 19, 8285-8290(2011).

    [82] I V Kabakova, R Pant, D Y Choi, et al. Narrow linewidth Brillouin laser based on chalcogenide photonic chip. Optics Letters, 38, 3208-3211(2013).

    [83] D Marpaung, B Morrison, M Pagani, et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica, 2, 76-83(2015).

    [84] B Morrison, A Casas-Bedoya, G Ren, et al. Compact Brillouin devices through hybrid integration on silicon. Optica, 4, 847-854(2017).

    [85] J Song, X Guo, W Peng, et al. Stimulated Brillouin scattering in low-loss Ge25Sb10S65 chalcogenide waveguides. Journal of Lightwave Technology, 39, 5048-5053(2021).

    [86] B J Eggleton, C G Poulton, P T Rakich, et al. Brillouin integrated photonics. Nature Photonics, 13, 664-677(2019).

    [87] H Rong, S Xu, O Cohen, et al. A cascaded silicon Raman laser. Nature Photonics, 2, 170-174(2008).

    [88] P Latawiec, V Venkataraman, M J Burek, et al. On-chip diamond Raman laser. Optica, 2, 924-928(2015).

    [89] X Liu, C Sun, B Xiong, et al. Integrated continuous-wave aluminum nitride Raman laser. Optica, 4, 893-896(2017).

    [90] Z Fang, H Luo, J Lin, et al. Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk. Optics Letters, 44, 5953-5956(2019).

    [91] F Vanier, M Rochette, N Godbout, et al. Raman lasing in As2S3 high-Q whispering gallery mode resonators. Optics Letters, 38, 4966-4969(2013).

    [92] F Vanier, Y A Peter, M Rochette. Cascaded Raman lasing in packaged high quality As2S3 microspheres. Optics Express, 22, 28731-28739(2014).

    [93] A V Andrianov, E A Anashkina. Tunable Raman lasing in an As2S3 chalcogenide glass microsphere. Optics Express, 29, 5580-5587(2021).

    [94] O Graydon. Birth of the programmable optical chip. Nat Photonics, 10, 1(2016).

    [95] D Loke, T Lee, W Wang, et al. Breaking the speed limits of phase-change memory. Science, 336, 1566-1569(2012).

    [96] C Ríos, M Stegmaier, P Hosseini, et al. Integrated all-photonic non-volatile multi-level memory. Nature Photonics, 9, 725-732(2015).

    [97] Q Zhang, Y Zhang, J Li, et al. Broadband nonvolatile photonic switching based on optical phase change materials: Beyond the classical figure-of-merit. Optics Letters, 43, 94-97(2018).

    [98] B Zhang, Y Sun, Y Xu, et al. Loss-induced switching between electromagnetically induced transparency and critical coupling in a chalcogenide waveguide. Optics Letters, 46, 2828-2831(2021).

    [99] S Abdollahramezani, O Hemmatyar, H Taghinejad, et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 9, 1189-1241(2020).

    [100] Z Fang, R Chen, J Zheng, et al. Non-volatile reconfigurable silicon photonics based on phase-change materials. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-17(2021).

    [101] Nisar M S, Yang X, Lu L, et al. Onchip integrated photonic devices based on phase change materials [C]Proceedings of the Photonics, 2021.

    [102] C Rios, P Hosseini, C D Wright, et al. On‐chip photonic memory elements employing phase‐change materials. Advanced Materials, 26, 1372-1377(2014).

    [103] J Zheng, A Khanolkar, P Xu, et al. GST-on-silicon hybrid nanophotonic integrated circuits: A non-volatile quasi-continuously reprogrammable platform. Optical Materials Express, 8, 1551-1561(2018).

    [104] P Xu, J Zheng, J K Doylend, et al. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photonics, 6, 553-557(2019).

    [105] Z Fang, J Zheng, A Saxena, et al. Non‐volatile reconfigurable integrated photonics enabled by broadband low‐loss phase change material. Advanced Optical Materials, 9, 2002049(2021).

    [106] W H Pernice, H Bhaskaran. Photonic non-volatile memories using phase change materials. Applied Physics Letters, 101, 171101(2012).

    [107] Cheng Hongwei, Yu Zhenming, Zhang Tian, et al. Advances challenges of optical neural wks[J]. Chinese Journal of Lasers, 2020, 47(5): 0500004. (in Chinese)

    [108] J Feldmann, M Stegmaier, N Gruhler, et al. Calculating with light using a chip-scale all-optical abacus. Nature Communications, 8, 1-8(2017).

    [109] Gallo M L, Sebastian A, Mathis R, et al. Mixedprecision inmemy computing [J]. Nature Electronics, 2018, 1(4): 246253.

    [110] C Ríos, N Youngblood, Z Cheng, et al. In-memory computing on a photonic platform. Science Advances, 5, eaau5759(2019).

    [111] J Feldmann, N Youngblood, M Karpov, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [112] J Feldmann, N Youngblood, X Li, et al. Integrated 256 cell photonic phase-change memory with 512-bit capacity. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-7(2020).

    [113] M Delaney, I Zeimpekis, D Lawson, et al. A new family of ultralow loss reversible phase‐change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Advanced Functional Materials, 30, 2002447(2020).

    [114] W Dong, H Liu, J K Behera, et al. Wide bandgap phase change material tuned visible photonics. Advanced Functional Materials, 29, 1806181(2019).

    [115] Y Zhang, J B Chou, J Li, et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nature Communications, 10, 1-9(2019).

    [116] Y Zhang, C Fowler, J Liang, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology, 16, 661-666(2021).

    [117] X Yang, M S Nisar, W Yuan, et al. Phase change material enabled 2×2 silicon nonvolatile optical switch. Optics Letters, 46, 4224-4227(2021).

    [118] A Alquliah, M Elkabbash, J Cheng, et al. Reconfigurable metasurface-based 1×2 waveguide switch. Photonics Research, 9, 2104-2115(2021).

    [119] J Zheng, Z Fang, C Wu, et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Advanced Materials, 32, 2001218(2020).

    [120] H Zhang, L Zhou, L Lu, et al. Miniature multilevel optical memristive switch using phase change material. ACS Photonics, 6, 2205-2212(2019).

    Zhen Yang, Yuefeng Wang, Huimin Jin, Zhiyuan Wang, Peipeng Xu, Wei Zhang, Weiwei Chen, Shixun Dai. Review of chalcogenide glass integrated photonic devices (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220152
    Download Citation