• Journal of Infrared and Millimeter Waves
  • Vol. 42, Issue 5, 643 (2023)
Chang-Lin WU1、2, Chang WANG1、2、*, and Jun-Cheng CAO1、2、**
Author Affiliations
  • 1Key Laboratory of Terahertz Solid-State Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China
  • 2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2023.05.001 Cite this Article
    Chang-Lin WU, Chang WANG, Jun-Cheng CAO. Numerical simulation of scanning nearfield optical microscopy based on the source dipole model[J]. Journal of Infrared and Millimeter Waves, 2023, 42(5): 643 Copy Citation Text show less
    References

    [1] E H Synge. A suggested method for extending microscopic resolution into the ultra-microscopic region. The London Edinburgh and Dublin Philosophical Magazine and Journal of Science, 6, 356-362(1928).

    [2] J Wessel. Surface-enhanced optical microscopy. Journal of the Optical Society of America B, 2, 1538-1541(1985).

    [3] C C Williams, H K Wickramasinghe. Microscopy of chemical-potential variations on an atomic scale. Nature, 344, 317-319(1990).

    [4] L Novotny, E J Sánchez, X S Xie. Near-Field Optical Imaging Using Metal Tips Illuminated by Higher-Order Hermite-Gaussian Beams. Ultramicroscopy, 71, 21-29(1998).

    [5] R Hillenbrand, T Taubner, F Keilmann. Phonon-enhanced light-matter interaction at the nanometre scale. Nature, 418, 159-162(2002).

    [6] T L Cocker, V Jelic, M Gupta et al. An ultrafast terahertz scanning tunnelling microscope. Nature Photonics, 7, 620-625(2013).

    [7] T Neuman, E Ruben, D Casanova et al. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation. Nano Letters, 18, 2358-2364(2018).

    [8] C Wagner, M F B Green, M Maiworm et al. Quantitative imaging of electric surface potentials with single-atom sensitivity. Nature Materials, 18, 853-859(2019).

    [9] L Wang, Y Xia, W Ho. Atomic-scale quantum sensing based on the ultrafast coherence of an H2 molecule in an STM cavity. Science, 376, 401-405(2022).

    [10] A Pizzuto, X Chen, H Hu et al. Anomalous contrast in broadband THz near-field imaging of gold microstructures. Optics Express, 29, 15190-15198(2021).

    [11] H -G Von Ribbeck, M Brehm, D Van der Weide et al. Spectroscopic THz near-field microscope. Optics Express, 16, 3430-3438(2008).

    [12] J Nishida, S C Johnson, P T Chang et al. Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics. Nature Communications, 3, 1-9(2022).

    [13] Z Yang, D Tang, J Hu et al. Near‐Field Nanoscopic Terahertz Imaging of Single Proteins. Small, 17, 2005814(2021).

    [14] M Eisele, T L Cocker, M A Huber et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nature Photonics, 8, 841-845(2014).

    [15] Z Fei, G O Andreev, W Bao et al. Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface. Nano Letters, 11, 4701-4705(2011).

    [16] P Alonso-González, A Y Nikitin, Y Gao et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nature Nanotechnology, 12, 31-35(2016).

    [17] F Huth, A Chuvilin, M Schnell et al. Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy. Nano Letters, 13, 1065-1072(2013).

    [18] X Chen, X Liu, X Guo et al. THz Near-Field Imaging of Extreme Subwavelength Metal Structures. ACS Photonics, 7, 687-694(2020).

    [19] B Knoll, F Keilmann. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Optics Communications, 182, 321-328(2000).

    [20] F Keilmann, R Hillenbrand. Near-field microscopy by elastic light scattering from a tip. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362, 787-805(2004).

    [21] A Cvitkovic, N Ocelic, R Hillenbrand. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Optics Express, 15, 8550-8565(2007).

    [22] A A Govyadinov, I Amenabar, F Huth et al. Quantitative Measurement of Local Infrared Absorption and Dielectric Function with Tip-Enhanced Near-Field Microscopy. Journal of Physical Chemistry Letters, 4, 1526-1531(2013).

    [23] A S Mcleod, P Kelly, M D Goldflam et al. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Physical Review B, 90, 085136(2014).

    [24] F Mooshammer, M A Huber, F Sandner et al. Quantifying nanoscale electromagnetic fields in near-field microscopy by Fourier demodulation analysis. ACS Photonics, 7, 344-351(2020).

    [25] P McArdle, D J Lahneman, A Biswas et al. Near-field infrared nano-spectroscopy of surface phonon-polariton resonances. Physical Review Research, 2, 023272(2020).

    [26] R Hillenbrand. Infrared and terahertz nanoscopy for dielectric imaging and near-field mapping of antennas and transmission-lines. 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, 1-3(2011).

    [27] X Chen, C F B Lo, W Zheng et al. Rigorous numerical modeling of scattering-type scanning near-field optical microscopy and spectroscopy. Applied Physics Letters, 111, 223110(2017).

    [28] S Mastel, A A Govyadinov, C Maissen et al. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photonics, 5, 3372-3378(2018).

    [29] F H Feres, R A Mayer, L Wehmeier et al. Sub-diffractional cavity modes of terahertz hyperbolic phonon polaritons in tin oxide. Nature Communications, 12, 1-9(2021).

    [30] L Thomas, T Hannotte, C N Santos et al. Imaging of THz Photonic Modes by Scattering Scanning Near-Field Optical Microscopy. ACS Applied Materials & Interfaces, 14, 32608-32617(2022).

    [31] Y Zhang, X Chen, D Chen et al. Partially Metal-Coated Tips for Near-Field Nanospectroscopy. Physical Review Applied, 15, 014048(2021).

    [32] B Hecht, H Bielefeldt, L Novotny et al. Local Excitation, Scattering, and Interference of Surface Plasmons. Physical Review Letters, 77, 1889-1892(1996).

    [33] S Mastel, M B Lundeberg, P Alonso-González et al. Terahertz Nanofocusing with Cantilevered Terahertz-Resonant Antenna Tips. Nano Letters, 17, 6526-6533(2017).

    [34] W Zhang, Y Chen. Visibility of subsurface nanostructures in scattering-type scanning near-field optical microscopy imaging. Optics Express, 28, 6696(2020).

    Chang-Lin WU, Chang WANG, Jun-Cheng CAO. Numerical simulation of scanning nearfield optical microscopy based on the source dipole model[J]. Journal of Infrared and Millimeter Waves, 2023, 42(5): 643
    Download Citation