• Infrared and Laser Engineering
  • Vol. 50, Issue 3, 20210010 (2021)
Chao Ban1, Weilin Pan1、2, Rui Wang3, Wentao Huang3, Fuchao Liu4, Zhangjun Wang5, Xin Fang6, Xuewu Cheng7, and Hongqiao Hu3
Author Affiliations
  • 1Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai 200136, China
  • 4School of Electronic Information, Wuhan University, Wuhan 430072, China
  • 5Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao 266100, China
  • 6Key Laboratory of Geospace Environment, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
  • 7Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • show less
    DOI: 10.3788/IRLA20210010 Cite this Article
    Chao Ban, Weilin Pan, Rui Wang, Wentao Huang, Fuchao Liu, Zhangjun Wang, Xin Fang, Xuewu Cheng, Hongqiao Hu. Initial results of Rayleigh scattering lidar observations at Zhongshan station, Antarctica[J]. Infrared and Laser Engineering, 2021, 50(3): 20210010 Copy Citation Text show less

    Abstract

    A Rayleigh scattering lidar for measuring the atmospheric density and temperature has been deployed at Zhongshan Station (69.4° S, 76.4° E), Antarctica. Lidar transmitter was a frequency doubled Nd:YAG laser with ~400 mJ pulse energy and 30 Hz repetition rate. A telescope with 0.8 m diameter pointing to the zenith direction served as the lidar receiver. This lidar was capable of profiling the density and temperature in the Upper Stratosphere and Lower Mesosphere (USLM) region. At the vertical resolution of 300 m and the temporal resolution of 30 min, the lidar measurement uncertainties, mainly due to the photon noise, were calculated to be within 1.5% and 1 K for density and temperature, respectively. Since March 2020, this lidar has been routinely operated at Zhongshan station for exploring the atmospheric density and temperature variations and wave propagation characteristics in the polar USLM region.
    $ N\left({\textit{z}}\right)=A\left(\eta {T}_{{\rm{A}}}^{2}\right)\left({\sigma }_{{\rm{ray}}}\rho \right({\textit{z}}\left){\Delta }{\textit{z}}\right)\dfrac{1}{{{\textit{z}}}^{2}}+{N}_{{\rm{B}}} $(1)

    View in Article

    $ \rho \left({\textit{z}}\right)=\dfrac{{{\textit{z}}}^{2}\left(N\left({\textit{z}}\right)-{N}_{{\rm{B}}}\right)}{{{\textit{z}}}_{0}^{2}\left(N\left({{\textit{z}}}_{0}\right)-{N}_{{\rm{B}}}\right)}\rho \left({{\textit{z}}}_{0}\right) $(2)

    View in Article

    $ \frac{\Delta \rho \left({\textit{z}}\right)}{\rho \left({\textit{z}}\right)}\approx \frac{\sqrt{N\left({\textit{z}}\right)}}{N\left({\textit{z}}\right)-{N}_{{\rm{B}}}} $(3)

    View in Article

    $ PV=nRT $(4)

    View in Article

    $ \rho =\frac{m}{V} $(5)

    View in Article

    $ {\rm{d}}P=-\rho g{\rm{d}}{\textit{z}} $(6)

    View in Article

    $ T\left({\textit{z}}\right)=T\left({{\textit{z}}}_{{\rm{seed}}}\right)\frac{\rho \left({{\textit{z}}}_{{\rm{seed}}}\right)}{\rho \left({\textit{z}}\right)}+\frac{1}{R}{\int }_{{\textit{z}}}^{{{\textit{z}}}_{{\rm{seed}}}}g\left(r\right){\rm{d}}r\frac{\rho \left(r\right)}{\rho \left({\textit{z}}\right)} $(7)

    View in Article

    $ T\left({\textit{z}}\right)\approx T\left({{\textit{z}}}_{0}\right){\left(\frac{{\textit{z}}}{{{\textit{z}}}_{0}}\right)}^{2}\frac{{N}_{{\rm{R}}}\left({{\textit{z}}}_{0}\right)}{{N}_{{\rm{R}}}\left({\textit{z}}\right)}+\frac{\Delta {\textit{z}}}{{{R}}}\sum\nolimits_{r={\textit{z}}}^{{{\textit{z}}}_{0}}\frac{{N}_{{\rm{R}}}\left(r\right)}{{N}_{{\rm{R}}}\left({\textit{z}}\right)}\frac{g\left(r\right){{\textit{z}}}^{2}}{{r}^{2}} $(8)

    View in Article

    $\begin{split} & \Delta {{T}}\left( {{{\textit{z}}}} \right){{ = }}\sum\nolimits_{{{{{\textit{z}}}}_{{i}}}{{ = {\textit{z}} + }}\Delta {{{\textit{z}}}}}^{{{{{\textit{z}}}}_{{0}}}} {k(} {{{{\textit{z}}}}_{{i}}}{{)N(}}{{{{\textit{z}}}}_{{i}}})/\\ & N({{{\textit{z}}}})\sqrt {\frac{{ \displaystyle\sum\nolimits_{{{{{\textit{z}}}}_{{i}}}} {{k}} {{\left( {{{{{\textit{z}}}}_{{i}}}} \right)}^{{2}}}{{\left( {\overline { \Delta {{N}}\left( {{{{{\textit{z}}}}_{{i}}}} \right)}} \right)}^{{2}}}}}{{{{\left[{\displaystyle\sum _{{{{{\textit{z}}}}_{{i}}}}}{{k(}}{{{{\textit{z}}}}_{{i}}}{{)N(}}{{{{\textit{z}}}}_{{i}}}{{)}}\right]}^{{2}}}}}{{ + }}\frac{{{{\left( {\overline {\Delta {{N}}\left( {{{{{\textit{z}}}}_{{i}}}} \right)}} \right)}^{{2}}}}}{{{{N}}{{\left( {{{{{\textit{z}}}}_{{i}}}} \right)}^{{2}}}}}} \end{split} $(9)

    View in Article

    $ \Delta T\left({\textit{z}}\right)\leqslant T\left({\textit{z}}\right)*\sqrt{\frac{1+\dfrac{1}{S\!BR\left({\textit{z}}\right)}}{2{N}_{{\rm{R}}}\left({\textit{z}}\right)}} $(10)

    View in Article

    Chao Ban, Weilin Pan, Rui Wang, Wentao Huang, Fuchao Liu, Zhangjun Wang, Xin Fang, Xuewu Cheng, Hongqiao Hu. Initial results of Rayleigh scattering lidar observations at Zhongshan station, Antarctica[J]. Infrared and Laser Engineering, 2021, 50(3): 20210010
    Download Citation