
- Photonics Research
- Vol. 10, Issue 7, 1689 (2022)
Abstract
1. INTRODUCTION
Optical imaging through turbid media has various applications, from long-range observations through turbulence to imaging inside living tissues [1–5]. In turbid media, light waves are distorted due to inhomogeneities, resulting in a loss of spatial resolution and reduced imaging depth. Low-order aberrations due to random refractive index fluctuations can be overcome by adaptive optics [6] and turbulence-free ghost imaging [7], while the problem becomes intractable for optically opaque media in which strong light scattering scrambles the spatial information conveyed by light fields. Early experiments using holographic imaging [8] demonstrated that scattering by stationary media does not erase spatial information carried by light fields [9]. Speckle patterns appear random but are essentially deterministic, and information about the optical input can be retrieved. Recent advances in wavefront shaping exploiting transmission matrices [10–14] and optical phase conjugation [15–19] have enabled focusing and imaging through scattering media. However, they are either invasive and require holographic or interferometric measurements or need prior knowledge of the scattering properties of the media. Recent developments taking advantage of the angular correlation of speckle patterns [20–22], i.e., “memory effect,” enable non-invasive imaging through scattering layers using the auto-correlation of speckle patterns and a phase retrieval algorithm [23–26]. Even though these techniques do not rely on the scattering properties of the media, they share some shortcomings. For example, the memory-effect range restricts this approach to thin scattering layers, the small single speckle grain requires a high-resolution camera to resolve, and the iterative phase-retrieval algorithm suffers from falling into local optimal solutions.
In addition, the dynamic nature of some media, such as fog and biological tissues, introduces another aspect to the challenge: the mapping between input and output fields becomes time dependent, resulting in a rapid decorrelation of optical output information. The vision through the turbid medium between the object and camera has been realized through speckle correlation and shower curtain effects [27]. However, this method fails when the medium between the source and the object is also dynamic. Alternatively, ultrasound-modulated light correlation can be used to image an object hidden inside dynamic media [28]. Nevertheless, the measurements are carried out using raster scans, thus causing a very slow imaging speed. Therefore, fast imaging modalities of objects completely immersed in dynamic media are still in high demand.
In this study, we describe a technique for computational imaging, called spatial–temporal encoded pattern (STEP) illumination, which allows noninvasive imaging through scattering media. We demonstrate experimentally that an image of an object can be reconstructed from a 1D time series of light intensity measured by a photodetector (PD), using ground glass diffusers and slices of chicken breast (1.2 mm thick each) as scattering media.
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
2. PRINCIPLE
Enlightened by the concepts of intensity modulation and Fourier transform (FT)-based discrimination [29], we design a sequence of patterns that consists of a bundle of sinusoidal time series with different frequencies. Every spatial location in each pattern is encoded by a unique frequency, a unique feature of the periodic oscillation of the pixel values along the “time” axis (i.e., looking at a single spatial location through different patterns). We illuminate the diffuser–object system with this sequence of patterns and collect the transmitted light by a single-pixel detector. The images of the objects are retrieved based on the fast FT (FFT) algorithm without knowledge of the object or scattering medium.
The design of STEP and the principle of image reconstruction are sketched in Fig. 1. We generate a sequence of grayscale (8-bit, 256 pixel values) patterns of height
Figure 1.Design of STEP and principle of image reconstruction. (a) Sequence of patterns consisting of a bundle of sinusoidal time series with unique frequencies at each spatial location. (b) Grayscale pattern sequence used to image an object through scattering media. (c) The object is first illuminated by STEP. The intensity of the transmitted light
3. RESULTS
A schematic of the experiment setup is shown in Fig. 2(a). The grayscale patterns are first decomposed to
Figure 2.Experimental demonstration of STEP with ground glass diffusers. (a) Schematic of the setup. DMD, digital micromirror device; L1 and L2, lenses; I, iris; D1 and D2, diffusers; O, object; PD, photodetector. (b) Images captured by a CMOS camera under three conditions: without scattering media (ND), with stationary diffusers (SD), and with dynamic diffusers (DD). (c) Images reconstructed by STEP with
The image of the object is first captured by a CMOS camera (replacing the PD) under three conditions: without scattering media (ND), with stationary diffusers (SD), and with dynamic diffusers (DD). As shown in Fig. 2(b), the object is invisible in the camera images when the diffusers are present (SD and DD), while the STEP imaging scheme can retrieve the images through both SD and DD [Fig. 2(c)]. We define
The size of an individual pixel determines the imaging resolution in the patterns projected onto the object: the smaller the pixel is, the more details of the object can be resolved. The pixel size at the image plane of L1 is determined by the size of the DMD pixel and the magnification of the imaging system defined by L1 when there are no scattering media. Decreasing the DMD pixel size will increase the resolution for a given magnification. However, the optical power reflected by each DMD pixel will be reduced due to the shrinkage of the reflective area (fewer micromirrors), resulting in a decreased signal-to-noise ratio (SNR) of the measured light. Conversely, increasing the DMD pixel will provide better SNR at the expense of a lower resolution. If the scattering layers are inserted, the degradation of pattern quality and the attenuation of optical power due to scattering must also be considered. Therefore, the trade-off between resolution and SNR should be decided according to the configuration of a specific setup and the optical properties of the media. In our experiment, the resolution is
To further demonstrate that STEP is also insensitive to the motion of the scattering centers in the media, we replaced the ground glass diffusers in Fig. 2(a) with two slices of chicken breast and performed similar measurements with
Figure 3.Imaging through two slices of chicken breast (
We define the visibility of the reconstructed image to be
Figure 4.Comparison of different image reconstruction algorithms. (a) Fourier transform (FT): a segment of
The image reconstruction can also be implemented by calculating the correlations between the measured intensity data
The correlation method also suffers from low computational efficiency. For
4. CONCLUSION
In conclusion, we have developed a computational imaging method named “STEP” to realize non-invasive imaging through scattering media with a single-pixel PD. We have demonstrated the ability of imaging an object sandwiched between two opaque scattering glass diffusers, as well as for the same object embedded in chicken breast layers, where the light experienced multiple scattering. This method is insensitive to the motion of the scattering centers in the media. The design of STEP removes the requirement of a high-resolution camera. It allows an elegant FFT-based image reconstruction algorithm that is more computationally efficient than correlation-based methods, which may be more favorable in many application fields. Our technique provides new perspectives for peeking through multiple scattering turbid media and enables potential fast images to diagnose biological tissues.
References
[1] A. W. Lohmann, G. Weigelt, B. Wirnitzer. Speckle masking in astronomy: triple correlation theory and applications. Appl. Opt., 22, 4028-4037(1983).
[2] Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, J.-W. Pan. Single-photon computational 3D imaging at 45 km. Photon. Res., 8, 1532-1540(2020).
[3] Z.-P. Li, J.-T. Ye, X. Huang, P.-Y. Jiang, Y. Cao, Y. Hong, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, J.-W. Pan. Single-photon imaging over 200 km. Optica, 8, 344-349(2021).
[4] V. Ntziachristos. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods, 7, 603-614(2010).
[5] S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, W. Choi. Deep optical imaging within complex scattering media. Nat. Rev. Phys., 2, 141-158(2020).
[6] R. K. Tyson. Principles of Adaptive Optics(2011).
[7] R. E. Meyers, K. S. Deacon, Y. Shih. Turbulence-free ghost imaging. Appl. Phys. Lett., 98, 111115(2011).
[8] E. N. Leith, J. Upatnieks. Holographic imagery through diffusing media. J. Opt. Soc. Am., 56, 523(1966).
[9] I. Freund. Looking through walls and around corners. Physica A, 168, 49-65(1990).
[10] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).
[11] S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan. Image transmission through an opaque material. Nat. Commun., 1, 81(2010).
[12] J. Yoon, K. Lee, J. Park, Y. Park. Measuring optical transmission matrices by wavefront shaping. Opt. Express, 23, 10158-10167(2015).
[13] H. B. de Aguiar, S. Gigan, S. Brasselet. Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping. Phys. Rev. A, 94, 043830(2016).
[14] M. Kim, W. Choi, Y. Choi, C. Yoon, W. Choi. Transmission matrix of a scattering medium and its applications in biophotonics. Opt. Express, 23, 12648-12668(2015).
[15] G. S. He. Optical phase conjugation: principles, techniques, and applications. Prog. Quantum Electron., 26, 131-191(2002).
[16] Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics, 2, 110-115(2008).
[17] D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, C. Yang. Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica, 2, 728-735(2015).
[18] T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, Z. Yaqoob. Digital optical phase conjugation for delivering two-dimensional images through turbid media. Sci. Rep., 3, 1909(2013).
[19] I. M. Vellekoop, M. Cui, C. Yang. Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett., 101, 081108(2012).
[20] I. Freund, M. Rosenbluh, S. Feng. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett., 61, 2328-2331(1988).
[21] G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz, I. M. Vellekoop. Generalized optical memory effect. Optica, 4, 886-892(2017).
[22] H. Liu, Z. Liu, M. Chen, S. Han, L. V. Wang. Physical picture of the optical memory effect. Photon. Res., 7, 1323-1330(2019).
[23] J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).
[24] O. Katz, P. Heidmann, M. Fink, S. Gigan. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784-790(2014).
[25] M. Cua, E. H. Zhou, C. Yang. Imaging moving targets through scattering media. Opt. Express, 25, 3935-3945(2017).
[26] X. Li, A. Stevens, J. A. Greenberg, M. E. Gehm. Single-shot memory-effect video. Sci. Rep., 8, 13402(2018).
[27] E. Edrei, G. Scarcelli. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect. Optica, 3, 71-74(2016).
[28] H. Ruan, Y. Liu, J. Xu, Y. Huang, C. Yang. Fluorescence imaging through dynamic scattering media with speckle-encoded ultrasound-modulated light correlation. Nat. Photonics, 14, 511-516(2020).
[29] S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, H. Ramachandran. Real-time imaging through strongly scattering media: seeing through turbid media, instantly. Sci. Rep., 6, 25033(2016).
[30] X. Wen, S. Adhikari, C. L. Cortes, D. J. Gosztola, S. K. Gray, G. P. Wiederrecht. Ghost imaging second harmonic generation microscopy. Appl. Phys. Lett., 116, 191101(2020).
[31] B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, M. J. Padgett. 3D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).
[32] V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, J. Lancis. Compressive imaging in scattering media. Opt. Express, 23, 14424-14433(2015).
[33] Z. Zhang, X. Ma, J. Zhong. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun., 6, 6225(2015).
[34] X. Hu, H. Zhang, Q. Zhao, P. Yu, Y. Li, L. Gong. Single-pixel phase imaging by Fourier spectrum sampling. Appl. Phys. Lett., 114, 051102(2019).
[35] G. M. Gibson, G. M. Gibson, S. D. Johnson, S. D. Johnson, M. J. Padgett, M. J. Padgett. Single-pixel imaging 12 years on: a review. Opt. Express, 28, 28190-28208(2020).
[36] Y. Li, B. Yang, P. Lu, S. Li. Detecting technique of weak periodic pulse signal via synthesis of cross-correlation and chaotic system. J. Electron., 20, 397-400(2003).
[37] M. A. Razak. Detection and extraction of weak signals buried in noise. Am. J. Phys., 77, 1061-1065(2009).
[38] P. Rudnick. The detection of weak signals by correlation methods. J. Appl. Phys., 24, 128-131(1953).

Set citation alerts for the article
Please enter your email address