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Optical imaging through scattering media has long been a challenge. Many approaches have been developed for
focusing light or imaging objects through scattering media, but usually, they are either invasive, limited to stationary
or slow-moving media, or require high-resolution cameras and complex algorithms to retrieve the images. By uti-
lizing spatial–temporal encoded patterns (STEPs), we introduce a technique for the computation of imaging that
overcomes these restrictions. With a single-pixel photodetector, we demonstrate non-invasive imaging through scat-
tering media. This technique is insensitive to the motion of the media. Furthermore, we demonstrate that our image
reconstruction algorithm is much more efficient than correlation-based algorithms for single-pixel imaging, which
may allow fast imaging for applications with limited computing resources. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.456156

1. INTRODUCTION

Optical imaging through turbid media has various applications,
from long-range observations through turbulence to imaging
inside living tissues [1–5]. In turbid media, light waves are dis-
torted due to inhomogeneities, resulting in a loss of spatial res-
olution and reduced imaging depth. Low-order aberrations due
to random refractive index fluctuations can be overcome by
adaptive optics [6] and turbulence-free ghost imaging [7], while
the problem becomes intractable for optically opaque media in
which strong light scattering scrambles the spatial information
conveyed by light fields. Early experiments using holographic
imaging [8] demonstrated that scattering by stationary media
does not erase spatial information carried by light fields [9].
Speckle patterns appear random but are essentially determinis-
tic, and information about the optical input can be retrieved.
Recent advances in wavefront shaping exploiting transmission
matrices [10–14] and optical phase conjugation [15–19] have
enabled focusing and imaging through scattering media.
However, they are either invasive and require holographic or
interferometric measurements or need prior knowledge of
the scattering properties of the media. Recent developments
taking advantage of the angular correlation of speckle patterns
[20–22], i.e., “memory effect,” enable non-invasive imaging
through scattering layers using the auto-correlation of speckle
patterns and a phase retrieval algorithm [23–26]. Even though
these techniques do not rely on the scattering properties of
the media, they share some shortcomings. For example, the

memory-effect range restricts this approach to thin scattering
layers, the small single speckle grain requires a high-resolution
camera to resolve, and the iterative phase-retrieval algorithm
suffers from falling into local optimal solutions.

In addition, the dynamic nature of some media, such as
fog and biological tissues, introduces another aspect to the
challenge: the mapping between input and output fields be-
comes time dependent, resulting in a rapid decorrelation of
optical output information. The vision through the turbid
medium between the object and camera has been realized
through speckle correlation and shower curtain effects [27].
However, this method fails when the medium between the
source and the object is also dynamic. Alternatively, ultra-
sound-modulated light correlation can be used to image an
object hidden inside dynamic media [28]. Nevertheless, the
measurements are carried out using raster scans, thus causing
a very slow imaging speed. Therefore, fast imaging modalities
of objects completely immersed in dynamic media are still in
high demand.

In this study, we describe a technique for computational im-
aging, called spatial–temporal encoded pattern (STEP) illumi-
nation, which allows noninvasive imaging through scattering
media. We demonstrate experimentally that an image of an ob-
ject can be reconstructed from a 1D time series of light inten-
sity measured by a photodetector (PD), using ground glass
diffusers and slices of chicken breast (1.2 mm thick each) as
scattering media.
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2. PRINCIPLE

Enlightened by the concepts of intensity modulation and
Fourier transform (FT)-based discrimination [29], we design
a sequence of patterns that consists of a bundle of sinusoidal
time series with different frequencies. Every spatial location in
each pattern is encoded by a unique frequency, a unique feature
of the periodic oscillation of the pixel values along the “time”
axis (i.e., looking at a single spatial location through different
patterns). We illuminate the diffuser–object system with this
sequence of patterns and collect the transmitted light by a
single-pixel detector. The images of the objects are retrieved
based on the fast FT (FFT) algorithm without knowledge of
the object or scattering medium.

The design of STEP and the principle of image
reconstruction are sketched in Fig. 1. We generate a sequence
of grayscale (8-bit, 256 pixel values) patterns of height H and
widthW (H ×W matrix). For a spatial location �i, j� (ith row,
jth column), the time series is given by

aijt � 127.5 sin
�
2πf ij

t
rs

�
� 127.5, t � 0,1,…,M patt − 1,

(1)

in which rs is the sampling rate, t is the discrete time variable
(index of the patterns), and M patt is the total number of
patterns. The frequency f ij is defined by f ij � f 0 �
�j� iW �Δf , where i � 0,1,…,H − 1, j � 0,1,…,W − 1 are
the row and column indices of the pixels, respectively. f 0 is the

starting frequency, and Δf is the increment. To avoid
signal aliasing, we set rs � 8f max, where f max � f 0 �
�HW − 1�Δf . The patterns are successively projected to the
diffuser–object system and synchronically collected by the
single-pixel PD. The 1D time series intensity can be ex-
pressed by

I t �
X
i, j

aijt I ij � N t , (2)

where I ij is the illumination intensity at location �i, j� of the
pattern displayed on a digital micromirror device (DMD), and
N t is a white noise term describing the noise of the detector and
environment. To reconstruct an image, I t is transformed to the
spectral domain:

S�ω� � F tfI tg ∝ M patt

X
i, j

I ijδ�f − f ij� � N , (3)

where F denotes the FT, M patt happens to be the number of
data points in the discrete 1D time series (integration length)
since the measurement is synchronized with the projection, and
N is the average noise level. For each f ij in the patterns, we
find the nearest frequency f̂ ij in the spectrum and save its mag-
nitude S�f̂ ij�. Finally, an H ×W matrix is filled with all the
S�f̂ ij� in their locations �i, j�, and a heatmap of this matrix
will yield an image of the object. It is the one-to-one correspon-
dence between the frequency f ij and the spatial location �i, j�
that allows us to retrieve the spatial information computation-
ally, and therefore we need to measure the transmitted light

Fig. 1. Design of STEP and principle of image reconstruction. (a) Sequence of patterns consisting of a bundle of sinusoidal time series with
unique frequencies at each spatial location. (b) Grayscale pattern sequence used to image an object through scattering media. (c) The object is first
illuminated by STEP. The intensity of the transmitted light I�t� is measured by a single-pixel photodetector, and then transformed to a spectral
domain by FFT. For each target frequency f ij, we find the nearest frequency f̂ ij in the spectrum using a binary search algorithm and save its
amplitude. An image of the object can be reconstructed by filling an H ×W matrix with the amplitudes.
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with only a single-pixel detector. We note here that the noise
only contributes a constant term in the spectrum given
by Eq. (3).

3. RESULTS

A schematic of the experiment setup is shown in Fig. 2(a). The
grayscale patterns are first decomposed to 8M patt monochrome
(1-bit, two pixel values) patterns to be compatible with the
input format of the DMD. A solid-state laser (633 nm) with
a power of ∼30 mW is used to illuminate the DMD, which
spatially modulates the incident laser beam and generates a
set of illumination projections with a spatial structure similar
to the input monochrome patterns. Each projection has
20 × 60 pixels, and each pixel is maintained by a 10 × 10 array
of DMD micromirrors (each micromirror has a size of
10.8 μm × 10.8 μm). We define such an array of mirrors as
a single “DMD pixel.” The patterns are then imaged by a lens
(L1) with a magnification of two. High-order images due to
diffraction are filtered out by an iris (I) such that only the
zeroth-order image with the strongest intensity is formed in the
image plane. A high-contrast object (O) with letters “IQSE”
(3 mm × 10 mm) being transparent is placed at the image
plane of L1, where the zeroth-order images of the patterns are
directly projected on the region of “IQSE” without scattering

media. Then, two ground glass diffusers (D1 and D2, 220 grit)
are inserted to block the view of the object. The 1 mm thick
ground glass diffusers with a 220 grit size are considered as stan-
dard highly scattering media [24,30]. The distances between
the object and D1 and D2 are about 1 mm and 5 mm, respec-
tively. The diffusers can be kept stationary or moved back and
forth at a random speed by a motorized stage. A lens (L2) fol-
lowed by a PD is placed behind D2 to collect the transmitted
light. The system is synchronized. The PD will record the
intensity each time a pattern is applied to the DMD.

The image of the object is first captured by a CMOS camera
(replacing the PD) under three conditions: without scattering
media (ND), with stationary diffusers (SD), and with dynamic
diffusers (DD). As shown in Fig. 2(b), the object is invisible in
the camera images when the diffusers are present (SD and DD),
while the STEP imaging scheme can retrieve the images
through both SD and DD [Fig. 2(c)]. We define β � M patt∕
M pixel as a scaled number of patterns, in which M patt is the
number of grayscale patterns, and M pixel � 120 is the number
of pixels in one pattern. The measurements in Fig. 2(c) are per-
formed with β � 8, i.e., 9600 grayscale patterns (8 × 9600
monochrome patterns), and β � 64. To reconstruct an image,
the frequency resolution of the FT δf � rs∕M patt must satisfy
the condition δf ≥ Δf , which determines the minimum value
of β. Our experimental parameters (f 0 � Δf � 0.1,H � 20,
W � 60) give β ≥ 8. Images in Fig. 2(b) are obtained with
β � 8. Raw pixels in the reconstructed image are always the
same as those in the patterns. Such a small number of pixels
leads to pixelated images. Nevertheless, the pixelation effect
can be eliminated computationally by applying bilinear inter-
polation to the raw pixels, and interpolated images of size
400 × 1200 are given in the second column of Fig. 2(c) for
each β.

The size of an individual pixel determines the imaging res-
olution in the patterns projected onto the object: the smaller
the pixel is, the more details of the object can be resolved. The
pixel size at the image plane of L1 is determined by the size of
the DMD pixel and the magnification of the imaging system
defined by L1 when there are no scattering media. Decreasing
the DMD pixel size will increase the resolution for a given mag-
nification. However, the optical power reflected by each DMD
pixel will be reduced due to the shrinkage of the reflective area
(fewer micromirrors), resulting in a decreased signal-to-noise
ratio (SNR) of the measured light. Conversely, increasing the
DMD pixel will provide better SNR at the expense of a lower
resolution. If the scattering layers are inserted, the degradation
of pattern quality and the attenuation of optical power due to
scattering must also be considered. Therefore, the trade-off
between resolution and SNR should be decided according
to the configuration of a specific setup and the optical proper-
ties of the media. In our experiment, the resolution is
∼0.2 mm, which is adequate for resolving the object of size
3 mm × 10 mm, and the transmitted light intensity is far above
the shot noise level of the detector under the scattering of 220
grit ground glass diffusers and 1.2 mm thick chicken breast
slices.

To further demonstrate that STEP is also insensitive to the
motion of the scattering centers in the media, we replaced the

Fig. 2. Experimental demonstration of STEP with ground glass dif-
fusers. (a) Schematic of the setup. DMD, digital micromirror device;
L1 and L2, lenses; I, iris; D1 and D2, diffusers; O, object; PD, photo-
detector. (b) Images captured by a CMOS camera under three con-
ditions: without scattering media (ND), with stationary diffusers (SD),
and with dynamic diffusers (DD). (c) Images reconstructed by STEP
with β � 8 (top) and β � 64 (bottom). Bilinear interpolation is
applied to remove the pixelation effect.
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ground glass diffusers in Fig. 2(a) with two slices of chicken
breast and performed similar measurements with β � 96. In
general, chicken breast has the following optical properties
for light at a wavelength of 633 nm [18]: scattering coefficient
23 mm−1, reduced scattering coefficient 0.8 mm−1, and absorp-
tion coefficient 0.01 mm−1. These parameters imply that scat-
tering is the dominant process that prevents the tissue from
being transparent. As shown in Fig. 3(b), the object cannot
be resolved in the camera image, whereas the image can be re-
constructed by STEP [Fig. 3(c)]. The larger the β, the better
the spectrum’s ability to distinguish target frequencies from
background noise. A much larger β to perform the computa-
tion implies stronger tissue scattering than in the ground glass
diffusers. In the reconstructed image, some bright spots appear
due to the uneven texture of the tissue, which results in less
evenly distributed transmitted light intensity than for the

ground glass diffusers. Nevertheless, the results suggest that
STEP can image through dynamic scattering media.

We define the visibility of the reconstructed image to be
v � �p̄s − p̄b�∕�p̄s � p̄b�, in which p̄s and p̄b are the average
pixel values of the signal (“IQSE” regions) and background
(other regions), respectively. Different from conventional
structured illumination techniques in which the information
required for image reconstruction is encoded only in the spatial
structure of the patterns [31–35], the STEP illumination also
encodes the information (frequencies) in time. One advantage
of introducing the time-domain encoding is that it allows fur-
ther improvement of the visibility via halving a successive seg-
ment of the data and calculating the cross-spectrum (CS) of the
two halves. The cross-correlation technique has been demon-
strated very effective in weak signal detection [36–38]. For im-
ages reconstructed with a specific β, higher visibility is obtained
if the searching of target frequencies is performed in the CS of
the two halves of the data [Fig. 4(b)] rather than in the Fourier
spectrum of all the data [Fig. 4(a)]. As shown in Fig. 4(b), we
divide the whole data set into two segments of the same length,
and their cross-correlation is found to be

I 1⋆I2 �
M
2
I ijI 0ij sin

�
2πf ij

τ

rs

�
�M

2
N 1N 2, (4)

where M is the total length of the two signal segments, and
N 1 and N 2 are the average noise levels for the two segments.
It follows that the CS is

S12�f ��F τfI1⋆I 2g∝
M
2

X
ij

I ijI 0ijδ�f − f ij��
M
2
δ�0�: (5)

As we have seen in Eq. (3), the noise contributes a constant
background equally at every frequency in the spectrum.

Fig. 4. Comparison of different image reconstruction algorithms. (a) Fourier transform (FT): a segment of M data points in the time domain is
transformed by FFT to frequency domain (spectrum). (b) Cross-spectrum (CS): a segment of M data points is divided into halves, and their CS is
calculated. (c) Correlation: the correlation between a segment of M data points and the time series in the original pattern sequence is calculated.
(d) Visibility of the reconstructed images using the three algorithms with different values of β for SD and DD. (e) Comparison of time complexity of
the image reconstruction algorithms. Computing time is measured with varying sizes of images in total pixels.

Fig. 3. Imaging through two slices of chicken breast (∼1.2 mm
each slice) with STEP. (a) One of the chicken breast slices used in
the experiment, which is sealed in plastic wraps. (b) Camera image
of the object hidden between two chicken breast slices. (c) Image re-
constructed by STEP with β � 96 (top). Bilinear interpolation is
applied to remove the pixelation effect (bottom).
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However, in the CS [Eq. (5)], the noise is concentrated to zero
frequency [indicated by δ�0�] and never contributes to the
cross-spectral magnitude at any other frequencies. Therefore,
the SNR is enhanced, leading to sharper peaks of the target
frequencies and less noisy reconstructed images.

The image reconstruction can also be implemented by cal-
culating the correlations between the measured intensity data I t
and the time series aijt in the original patterns [31,32,35]:

Cij �
XM−1

t�0

I taijt : (6)

Filling an H ×W matrix with all the Cij at their locations �i, j�
will yield an image of the object. However, the visibility of the
image reconstructed by correlation is lower than that of the im-
age produced by FFT-based methods, because in this case the
correlation is done without a shift in time, leading to a non-
trivial contribution of white noise. Figure 4(d) compares the
visibility of the images generated by the three algorithms for
different β in the cases of SD and DD. It is worth mentioning
that the performances of STEP-FT and STEP-CS are almost
independent of β: they have similar visibility over the investi-
gated range of β and show saturation behaviors. This means
high-quality images may be obtained with small data sets,
thus consuming less time on measurement and computation.
On the other hand, the correlation has the worst overall per-
formance and is sensitive to the value of β. Therefore, high-
quality images may be acquired only with a large number of
data points.

The correlation method also suffers from low computational
efficiency. For M patterns of size H ×W , both the time and
space complexity of the image reconstruction via correlation
are O�HWM �, in terms of the big-O notation, whereas the
time complexity of FFT-based reconstruction (FT and CS)
is O�M log2M � since the FFT algorithm is used to compute
the spectrum, and the space complexity is O�M �, as there is
no need to store the original patterns. A benchmark of the com-
puting time for FFT-based and correlation algorithms is given
in Fig. 4(e), where the rapid increase in computing time for
the correlation algorithm provides a sharp contrast with those
of FFT-based methods. The high computational efficiency of
the FFT-based algorithm may enable fast image processing with
devices having limited computing resources.

4. CONCLUSION

In conclusion, we have developed a computational imaging
method named “STEP” to realize non-invasive imaging
through scattering media with a single-pixel PD. We have
demonstrated the ability of imaging an object sandwiched be-
tween two opaque scattering glass diffusers, as well as for the
same object embedded in chicken breast layers, where the light
experienced multiple scattering. This method is insensitive to
the motion of the scattering centers in the media. The design of
STEP removes the requirement of a high-resolution camera.
It allows an elegant FFT-based image reconstruction algorithm
that is more computationally efficient than correlation-based
methods, which may be more favorable in many application
fields. Our technique provides new perspectives for peeking

through multiple scattering turbid media and enables potential
fast images to diagnose biological tissues.
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