• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 3, 297 (2021)
Rong-Guo LU1、*, Rui LIN1, Li-Ming SHEN1, Song-Wei CAI1, Yu-Jiao WANG1, Jin-Zhan CHEN1, Zhong-Hua YANG2, Jiang-Bo LYU1, Yong ZHOU1, Xiao-Ju WANG1, and Yong LIU1
Author Affiliations
  • 1State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2Chongqing United Microelectronics Center, Chongqing 401332, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.03.003 Cite this Article
    Rong-Guo LU, Rui LIN, Li-Ming SHEN, Song-Wei CAI, Yu-Jiao WANG, Jin-Zhan CHEN, Zhong-Hua YANG, Jiang-Bo LYU, Yong ZHOU, Xiao-Ju WANG, Yong LIU. 3-μm mid-infrared polarization-independent and CMOS-compatible graphene modulator[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 297 Copy Citation Text show less
    References

    [1] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science (New York, N.Y.), 306, 666-669(2004).

    [2] K. F. Mak, C. Lee, J. Hone et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [3] Li L. et al. Black phosphorus field-effect transistors. Nature Nanotechnol., 9, 372-377(2014).

    [4] K. S. Novoselov, A. K. Geim, S. V. Morozov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197(2005).

    [5] N. Song, H. Q. Fan, H. L. Tian. Reduced graphene oxide/ZnO nanohybrids: Metallic Zn powder induced one-step synthesis for enhanced photocurrent and photocatalytic response. Applied Surface Science, 353, 580-587(2015).

    [6] H. L. Tian, H. Q. Fan, J. W. Ma et al. Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing. Electrochimica Acta, 247, 787-794(2017).

    [7] J. W. Fang, H. Q. Fan, M. M. Li et al. Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution. Journal of Material Chemistry A, 3, 13819-13826(2015).

    [8] T. J. Echtermeyer, L. Britnell, P. K. Jasnos et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Communications, 2, 458(2011).

    [9] R.R Nair, P. Blake, A.N., K.S. Grigorenko et al. Fine structure constant defines visual transparency of graphene. Science, 320, 1308(2008).

    [10] K.I. Bolotin, K. Sikes, Z. Jiang et al. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 146, 351-355(2008).

    [11] M. Sadeghi, B. Janjan, Heidari, D. Abbott. Mid-infrared hybrid Si/VO2 modulator electrically driven by graphene electrodes. Optics Express, 28, 9198-9207(2020).

    [12] J. Chi, H.J. Liu, N. Huang et al. A broadband enhanced plasmonic modulator based on double-layer graphene at mid-infrared wavelength. Journal of Physics D-Applied Physics, 52, 445101(2019).

    [13] M. Cai, S.L. Wang, B. Gao et al. A New Electro-Optical Switch Modulator Based on the Surface Plasmon Polaritons of Graphene in Mid-Infrared Band. Sensors, 19, 89(2019).

    [14] Y Yamaguchi, S Takagi, M Takenaka. Low-loss graphene-based optical phase modulator operating at mid-infrared wavelength. Jpn. J. Appl. Phys., 57, 401-406(2018).

    [15] R. Hao, W. Du, E. P. Li et al. Graphene assisted TE/TM independent polarizer based on Mach-Zehnder interferometer. IEEE Photon. Technol. Lett., 27, 1112-1115(2015).

    [16] Z. S. Chang, K. S. Chiang. Experimental verification of optical models of graphene with multimode slab waveguides. Optics Letter, 41, 2129-2132(2016).

    [17] S. J. Koester, M. Li. High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett., 100, 171107(2012).

    [18] S.W. Ye, D. Liang, R.G. Lu et al. Polarization-independent modulator by partly tilted graphene-induced electro-absorption effect. IEEE Photonics Technology Letters, 29, 23-26(2017).

    [19] H XIAO, C GUI, W JIAN. A Graphene-based Polarization-Insensitive Optical Modulator(2014).

    [20] X. Peng, E. Li, R. Hao. Graphene-aluminum oxide meta material for a compact polarization-independent modulator, 1-3(2015).

    [21] M. K. Shah, R. Lu, D. Peng et al. Graphene-assisted polarization-insensitive electro-absorption optical modulator. IEEE Transactions on Nanotechnology, 16, 1004-1010(2017).

    [22] A Di Falco, M Massari, M G Scullion et al. Propagation losses of slotted photonics crystal waveguide. IEEE Photon Journal, 4, 1536-1541(2012).

    [23] X. Li, W. Cai, J. An et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312-1314(2009).

    [24] C. T. Phare, Y.-H. D. Lee, J. Cardenas et al. Graphene electro-optic modulator with 30 Ghz bandwidth. Nature Photonics, 9, 511(2015).

    [25] W. W. Cai, Y. W. Zhu, X. S. Li et al. Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett., 95, 123115(2009).

    [26] H ZHONG, Z ZHANG, B CHEN et al. Realization of low contact resistance close to theoretical limit in graphene transistors. Nano Research(2015).

    [27] S. de, N. J. Coleman. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?. ACS Nano, 4, 2713-2720(2010).

    [28] W. Li, Y. Liang, D. Yu et al. Ultraviolet/ozone treatment to reduce metal-graphene contact resistance. Appl. Phys. Lett., 102, 183110(2013).

    Rong-Guo LU, Rui LIN, Li-Ming SHEN, Song-Wei CAI, Yu-Jiao WANG, Jin-Zhan CHEN, Zhong-Hua YANG, Jiang-Bo LYU, Yong ZHOU, Xiao-Ju WANG, Yong LIU. 3-μm mid-infrared polarization-independent and CMOS-compatible graphene modulator[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 297
    Download Citation