• Laser & Optoelectronics Progress
  • Vol. 59, Issue 1, 0127001 (2022)
Peng Yang1、*, Xuezhi Ke1, Fenglei Zhang1, Yunlong Sun1, and Boya Xie2、**
Author Affiliations
  • 1Laboratory of Precision Optical Measurement, School of Electrical and Electronic Information Engineering, Hubei Polytechnic University, Huangshi , Hubei 435003, China
  • 2Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan , Hubei 430068, China
  • show less
    DOI: 10.3788/LOP202259.0127001 Cite this Article Set citation alerts
    Peng Yang, Xuezhi Ke, Fenglei Zhang, Yunlong Sun, Boya Xie. Sub-Shot-Noise Sub-Hertz Laser-Interferometric Measurement[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0127001 Copy Citation Text show less
    References

    [1] Acernese F, Amico P, Arnaud N et al. The present status of the VIRGO Central Interferometer[J]. Classical and Quantum Gravity, 19, 1421-1428(2002).

    [2] Willke B, Aufmuth P, Aulbert C et al. The GEO 600 gravitational wave detector[J]. Classical and Quantum Gravity, 19, 1377-1387(2002).

    [3] Ando M, Arai K, Takahashi R et al. Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy[J]. Physical Review Letters, 86, 3950(2001).

    [4] The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit[J]. Nature Physics, 7, 962-965(2011).

    [5] Cameron R, Cantatore G, Melissinos A C et al. Search for nearly massless, weakly coupled particles by optical techniques[J]. Physical Review D, 47, 3707-3725(1993).

    [6] Rikken G L J A, Rizzo C. Magnetoelectric birefringences of the quantum vacuum[J]. Physical Review A, 63, 012107(2000).

    [7] Zavattini E, Zavattini G, Ruoso G et al. Experimental observation of optical rotation generated in vacuum by a magnetic field[J]. Physical Review Letters, 99, 129901(2007).

    [8] Mei H H, Chen S J, Ni A W T. Suspension of the fiber mode-cleaner launcher and measurement of the high extinction-ratio (10–9) ellipsometer for the Q & A experiment[J]. Journal of Physics: Conference Series, 32, 236-243(2006).

    [9] Polzik E S, Carri J, Kimble H J. Spectroscopy with squeezed light[J]. Physical Review Letters, 68, 3020(1992).

    [10] Wolfgramm F, Cerè A, Beduini F A et al. Squeezed-light optical magnetometry[J]. Physical Review Letters, 105, 053601(2010).

    [11] Wasilewski W, Jensen K, Krauter H et al. Quantum noise limited and entanglement-assisted magnetometry[J]. Physical Review Letters, 104, 133601(2010).

    [12] Taylor M A, Janousek J, Daria V et al. Biological measurement beyond the quantum limit[J]. Nature Photonics, 7, 229-233(2013).

    [13] Gagliardi G, Salza M, Avino S et al. Probing the ultimate limit of fiber-optic strain sensing[J]. Science, 330, 1081-1084(2010).

    [14] McRae T G, Ngo S, Shaddock D A et al. Frequency stabilization for space-based missions using optical fiber interferometry[J]. Optics Letters, 38, 278-280(2013).

    [15] Ozkumur A Y, Kanik F E, Trueb J T et al. Interferometric detection and enumeration of viral particles using Si-based microfluidics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-7(2019).

    [16] Schnabel R, Mavalvala N, McClelland D E et al. Quantum metrology for gravitational wave astronomy[J]. Nature Communications, 1, 121(2010).

    [17] Babak S, Gair J, Sesana A et al. Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals[J]. Physical Review D, 95, 103012(2017).

    [18] Oelker E, Mansell G, Tse M et al. Ultra-low phase noise squeezed vacuum source for gravitational wave detectors[J]. Optica, 3, 682-685(2016).

    [19] Vahlbruch H, Mehmet M, Danzmann K et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 117, 110801(2016).

    [20] Aasi J, Abadie J, Abbott B P et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 7, 613-619(2013).

    [21] Fritschel P, Evans M, Frolov V. Balanced homodyne readout for quantum limited gravitational wave detectors[J]. Optics Express, 22, 4224-4234(2014).

    [22] Steinlechner S, Barr B W, Bell A S et al. Local-oscillator noise coupling in balanced homodyne readout for advanced gravitational wave detectors[J]. Physical Review D, 92, 072009(2015).

    [23] Liu F, Zhou Y Y, Yu J et al. Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement[J]. Applied Physics Letters, 110, 021106(2017).

    [24] Yang P, Xie B Y, Feng S. Subhertz interferometry at the quantum noise limit[J]. Optics Letters, 44, 2366-2369(2019).

    [25] Feng S, He D C, Xie B Y. Quantum theory of phase-sensitive heterodyne detection[J]. Journal of the Optical Society of America B, 33, 1365-1372(2016).

    [26] Mansell G L, McRae T G, Altin P A et al. Observation of Squeezed Light in the 2 μm Region[J]. Physical Review Letters, 120, 203603(2018).

    [27] Daryanoosh S, Slussarenko S, Berry D W et al. Experimental optical phase measurement approaching the exact Heisenberg limit[J]. Nature Communications, 9, 4606(2018).

    [28] Fan H, He D C, Feng S. Experimental study of a phase-sensitive heterodyne detector[J]. Journal of the Optical Society of America B, 32, 2172-2177(2015).

    [29] Xie B Y, Yang P, Feng S. Phase-sensitive heterodyne detection of two-mode squeezed light without noise penalty[J]. Journal of the Optical Society of America B, 35, 2342-2347(2018).

    [30] Xie B Y, Feng S. Squeezing-enhanced heterodyne detection of 10 Hz atto-Watt optical signals[J]. Optics Letters, 43, 6073-6076(2018).

    [31] Guo W B, Zhang Q C, Wu Z J. Real-time three-dimensional imaging technique based on phase-shift fringe analysis: a review[J]. Laser & Optoelectronics Progress, 58, 0800001(2021).

    [32] Zhang R F, Liu C. Interference fringe center point extraction method based on interval curve fitting[J]. Laser & Optoelectronics Progress, 58, 0812002(2021).

    [33] Zhao M Z, Zhang Y, Zhu Y Y. Research progress of early disease detection technology based on infrared thermography[J]. Laser & Optoelectronics Progress, 58, 0800002(2021).

    Peng Yang, Xuezhi Ke, Fenglei Zhang, Yunlong Sun, Boya Xie. Sub-Shot-Noise Sub-Hertz Laser-Interferometric Measurement[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0127001
    Download Citation