• Photonics Research
  • Vol. 8, Issue 12, 1857 (2020)
Yangyang Liang1, Tao Li1、2、3、*, Wenchao Qiao2, Tianli Feng2、6, Shengzhi Zhao2, Yuefeng Zhao3、4, Yuzhi Song3、4, and Christian Kränkel5
Author Affiliations
  • 1China Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Qingdao 266237, China
  • 2School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao 266237, China
  • 3Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • 4School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
  • 5Leibniz-Institut für Kristallzüchtung, 12489 Berlin, Germany
  • 6e-mail: tlfeng@sdu.edu.cn
  • show less
    DOI: 10.1364/PRJ.401168 Cite this Article Set citation alerts
    Yangyang Liang, Tao Li, Wenchao Qiao, Tianli Feng, Shengzhi Zhao, Yuefeng Zhao, Yuzhi Song, Christian Kränkel. Mid-infrared Q-switch performance of ZrC[J]. Photonics Research, 2020, 8(12): 1857 Copy Citation Text show less
    References

    [1] A. Godard. Infrared (2–12  μm) solid-state laser sources: a review. C. R. Phys., 8, 1100-1128(2007).

    [2] Y. Jin, S. M. Cristescu, F. J. Harren, J. Mandon. Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator. Opt. Express, 23, 20418-20427(2015).

    [3] P. Jiang, T. Chen, D. Yang, B. Wu, S. Cai, Y. Shen. A fiber laser pumped dual-wavelength mid-infrared optical parametric oscillator based on aperiodically poled magnesium oxide doped lithium niobate. Laser Phys. Lett., 10, 115405(2013).

    [4] D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, G. L. Belenky. 2.3–2.7-μm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers. IEEE Photon. Technol. Lett., 11, 794-796(1999).

    [5] A. Bauer, K. Rößner, T. Lehnhardt, M. Kamp, S. Höfling, L. Worschech, A. Forchel. Mid-infrared semiconductor heterostructure lasers for gas sensing applications. Semicond. Sci. Technol., 26, 014032(2011).

    [6] G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, N. Peyghambarian. Towards ten-watt-level 3–5  μm Raman lasers using tellurite fiber. Opt. Express, 23, 7559-7573(2015).

    [7] V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, A. A. Voronov. 3.77–5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures. IEEE J. Quantum Electron., 42, 907-917(2006).

    [8] S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, S. Vasilyev. Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides. IEEE J. Sel. Top. Quantum Electron., 21, 292-310(2015).

    [9] T. Li, K. Beil, C. Kränkel, G. Huber. Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm. Opt. Lett., 37, 2568-2570(2012).

    [10] M. Fan, T. Li, S. Zhao, G. Li, H. Ma, X. Gao, C. Kränkel, G. Huber. Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 μm using MoS2. Opt. Lett., 41, 540-543(2016).

    [11] H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, R. Yasuhara. A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8  μm with a graphene saturable absorber. Appl. Phys. Express, 12, 022002(2019).

    [12] Z. Yan, G. Li, T. Li, S. Zhao, K. Yang, S. Zhang, M. Fan, L. Guo, B. Zhang. Passively Q-switched Ho, Pr:LiLuF4 laser at 2.95  μm using MoSe2. IEEE Photon. J., 9, 1506207(2017).

    [13] R. I. Woodward, M. R. Majewski, S. D. Jackson. Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30  μm. APL Photon., 3, 116106(2018).

    [14] M. Fan, T. Li, J. Zhao, S. Zhao, G. Li, K. Yang, L. Su, H. Ma, C. Kränkel. Continuous wave and ReS2 passively Q-switched Er:SrF2 laser at approximately 3  μm. Opt. Lett., 43, 1726-1729(2018).

    [15] C. Kränkel. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range. IEEE J. Sel. Top. Quantum Electron., 21, 250-262(2014).

    [16] T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, M. Dubinskii. High power diode-pumped 2.7-μm Er3+:Y2O3 laser with nearly quantum defect-limited efficiency. Opt. Express, 19, A1082-A1087(2011).

    [17] H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, J. He. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+:LiLuF4 bulk laser at 2.95  μm. IEEE J. Sel. Top. Quantum Electron., 24, 1600205(2017).

    [18] H. Nie, X. Sun, B. Zhang, B. Yan, G. Li, Y. Wang, J. Liu, B. Shi, S. Liu, J. He. Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95  μm bulk laser. Opt. Lett., 43, 3349-3352(2018).

    [19] M. Fan, T. Li, S. Zhao, G. Li, X. Gao, K. Yang, D. Li, C. Kränkel. Multilayer black phosphorus as saturable absorber for an Er:Lu2O3 laser at ∼3  μm. Photon. Res., 4, 181-186(2016).

    [20] A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, V. G. Polushkin, M. P. Frolov. Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers. Quantum Electron., 36, 1-2(2006).

    [21] H. Nie, B. Shi, H. Xia, J. Hu, B. Zhang, K. Yang, J. He. High-repetition-rate kHz electro-optically Q-switched Ho, Pr:YLF 2.9  μm bulk laser. Opt. Express, 26, 33671-33677(2018).

    [22] X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, H. Zhang. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev., 12, 1700229(2018).

    [23] J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, J. H. Lee. Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking. Adv. Funct. Mater., 26, 7454-7461(2016).

    [24] S. Pellegrino, L. Thomé, A. Debelle, S. Miro, P. Trocellier. Radiation effects in carbides: TiC and ZrC versus SiC. Nucl. Instrum. Methods Phys. Res., Sect. B, 327, 103-107(2014).

    [25] M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater., 23, 2185-2192(2013).

    [26] G. W. Chinthaka Silva, A. A. Kercher, J. D. Hunn, R. C. Martin, G. E. Jellison, H. M. Meyer. Characterization of zirconium carbides using electron microscopy, optical anisotropy, Auger depth profiles, X-ray diffraction, and electron density calculated by charge flipping method. J. Solid State Chem., 194, 91-99(2012).

    [27] A. Arya, E. A. Carter. Structure, bonding, and adhesion at the ZrC(100)/Fe(110) interface from first principles. Surf. Sci., 560, 103-120(2004).

    [28] J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, Y. Chen. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett., 93, 131905(2008).

    [29] L. Chen, C. Iwamoto, E. Omurzak, S. Takebe, H. Okudera, A. Yoshiasa, S. Sulaimankulova, T. Mashimo. Synthesis of zirconium carbide (ZrC) nanoparticles covered with graphitic “windows” by pulsed plasma in liquid. RSC Adv., 1, 1083-1088(2011).

    Yangyang Liang, Tao Li, Wenchao Qiao, Tianli Feng, Shengzhi Zhao, Yuefeng Zhao, Yuzhi Song, Christian Kränkel. Mid-infrared Q-switch performance of ZrC[J]. Photonics Research, 2020, 8(12): 1857
    Download Citation