• Acta Optica Sinica
  • Vol. 41, Issue 7, 0729001 (2021)
Changming Wang and Wanrong Gao*
Author Affiliations
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
  • show less
    DOI: 10.3788/AOS202141.0729001 Cite this Article Set citation alerts
    Changming Wang, Wanrong Gao. Measurement of Scattering Coefficient of Glass Subsurface Defects Based on Micron SDOCT[J]. Acta Optica Sinica, 2021, 41(7): 0729001 Copy Citation Text show less
    References

    [1] Preston F W. The structure of abraded glass surfaces[J]. Transactions of the Optical Society, 23, 141(2002).

    [2] Randi J A, Lambropoulos J C, Jacobs S D. Subsurface damage in some single crystalline optical materials[J]. Applied Optics, 44, 2241-2249(2005).

    [3] Ball M J, Murphy N A, Shore P. Electrolytically assisted ductile-mode diamond grinding of BK7 and SF10 optical glasses[J]. Proceedings of SPIE, 1573, 30-38(1992).

    [4] Zhou Y, Funkenbusch P D, Quesnel D J et al. Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses[J]. Journal of the American Ceramic Society, 77, 3277-3280(1994).

    [5] Hed P P, Edwards D F. Optical glass fabrication technology.2: relationship between surface roughness and subsurface damage[J]. Applied optics, 26, 4677-4680(1987).

    [6] Lambropoulos J C, Li Y, Funkenbusch P D et al. Noncontact estimate of grinding-induced subsurface damage[J]. Proceedings of SPIE, 3782, 41-50(1999).

    [7] Lambropoulos J C, Jacobs S D, Gillman B E et al. Deterministic microgrinding, lapping, and polishing of glass-ceramics[J]. Journal of the American Ceramic Society, 88, 1127-1132(2005).

    [8] Shibata T, Ono A, Kurihara K et al. Cross-section transmission electron microscope observations of diamond-turned single-crystal Si surfaces[J]. Applied Physics Letters, 65, 2553-2555(1994).

    [9] Wang J, Maier R L. Quasi-Brewster angle technique for evaluating the quality of optical surfaces[J]. Proceedings of SPIE, 5375, 1286-1294(2004).

    [10] Zhang J P, Sun H Y, Wang S L et al. Three-dimensional reconstruction technology of subsurface defects in fused silica optical components[J]. Acta Optica Sinica, 40, 0216001(2020).

    [11] Wu X P, Gao W R, He Y. Estimation of parameters for evaluating subsurface microcracks in glass with in-line digital holographic microscopy[J]. Applied Optics, 55, A32-A42(2016).

    [12] Stifter D. Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography[J]. Applied Physics B, 88, 337-357(2007).

    [13] Wu X P, Gao W R, Zhang Y X et al. New method for non-destructive quantitative measurement of subsurface damage within glasses[J]. Chinese Journal of Lasers, 44, 0603001(2017).

    [14] Schmitt J M, Knüttel A, Bonner R F. Measurement of optical properties of biological tissues by low-coherence reflectometry[J]. Applied Optics, 32, 6032-6042(1993).

    [15] Thepass G, Lemij H G, Vermeer K A. Attenuation coefficients from SD-OCT data: structural information beyond morphology on RNFL integrity in glaucoma[J]. Journal of Glaucoma, 26, 1001-1009(2017).

    [16] Gao W, Lee P, Zhang X. Characterization of vitiligo by in vivo scattering coefficient of human skin[J]. Journal of Innovative Optical Health Sciences, 4, 67-72(2011). http://www.opticsjournal.net/Articles/Abstract?aid=OJ58ad07b1f2a1a567

    [17] Yang S S, Yao L, Liu K Y et al. Advances in functional optical coherence tomography and neuroimaging of stroke[J]. Chinese Journal of Lasers, 47, 0207015(2020).

    [18] Wu T, Wu C, Pan R B et al. Research on the identification of the ink mark based on the swept source optical coherence tomography[J]. Chinese Journal of Lasers, 47, 1104007(2020).

    [19] Faber D J, Sassoon D M B et al. Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography[J]. IEEE Transactions on Medical Imaging, 24, 1369-1376(2005).

    [20] Levitz D, Thrane L, Frosz M H et al. Determination of optical scattering properties of highly-scattering media in optical coherence tomography images[J]. Optics Express, 12, 249-259(2004).

    [21] Vermeer K A, Mo J. Weda J J A, et al. Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography[J]. Biomedical Optics Express, 5, 322-337(2014).

    [22] Lee P, Gao W R, Zhang X L. Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography[J]. Applied Optics, 49, 3538-3544(2010).

    [23] Schmitt J M, Knüttel A, Yadlowsky M et al. Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering[J]. Physics in Medicine and Biology, 39, 1705-1720(1994).

    [24] Cao W J, Gao W R, Wu X P. Spectral calibration method for spectral domain coherence tomography with ultra-wideband light source[J]. Laser & Optoelectronics Progress, 56, 101103(2019).

    Changming Wang, Wanrong Gao. Measurement of Scattering Coefficient of Glass Subsurface Defects Based on Micron SDOCT[J]. Acta Optica Sinica, 2021, 41(7): 0729001
    Download Citation