• Journal of Inorganic Materials
  • Vol. 34, Issue 2, 137 (2019)
Ying YANG1、2、3, De-Qun PAN1、2、3, Zheng ZHANG1、2、3, Tian CHEN1、2、3, Xiao-Min HAN1, Li-Song ZHANG1, Xue-Yi GUO1、2、3, [in Chinese]1、2、3, [in Chinese]1、2、3, [in Chinese]1、2、3, [in Chinese]1、2、3, [in Chinese]1, [in Chinese]1, and [in Chinese]1、2、3
Author Affiliations
  • 11. School of Metallurgy and Environment, Central South University, Changsha 410083, China
  • 22. Hunan Key Laboratory of Nonferrous Metal Resources Recycling, Changsha 410083, China
  • 33. Hunan Engineering Research Center of Nonferrous Metal Resources Recycling, Changsha 410083, China
  • show less
    DOI: 10.15541/jim20180233 Cite this Article
    Ying YANG, De-Qun PAN, Zheng ZHANG, Tian CHEN, Xiao-Min HAN, Li-Song ZHANG, Xue-Yi GUO, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Photovoltaic Performance of Ag2Se Quantum Dots Co-sensitized Solid-state Dye-sensitized Solar Cells[J]. Journal of Inorganic Materials, 2019, 34(2): 137 Copy Citation Text show less
    References

    [1] S XIE Y, Y TANG Y, J WU W. Porphyrin cosensitization for a photovoltaic efficiency of 11.5%: a record for non-ruthenium solar cells based on iodine electrolyte. J. Am. Chem. Soc., 137, 14055-14058(2015).

    [2] S MATHEW, P GAO, A YELLA. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem., 6, 242-247(2014).

    [3] H ARAKAWA, H OZAWA, O YU. Dependence of the efficiency improvement of black-dye based dye-sensitized solar cells on alkyl chain length of quaternary ammonium cations in electrolyte solutions. Chem. Phys. Chem., 15, 1201-1206(2014).

    [4] Y AOYAMA, K KAKIAGE, T YANO. Fabrication of a high-performance dye-sensitized solar cell with 12.8% conversion efficiency using organic silyl-anchor dyes. Chem. Commun., 51, 6315-6317(2015).

    [5] W YU W, G PENG X. Formation of high quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed., 41, 2368-2371(2002).

    [6] A NAG, D SARMA D, K SANTRA P. Origin of the enhanced photoluminescence from semiconductor CdSeS nanocrystals.. J. Phys. Chem. Lett., 1, 2149-2153(2010).

    [7] Y TAK, M SEOL, H KIM. Novel nanowire array based highly efficient quantum dot sensitized solar cell. Chem. Commun., 46, 5521-5523(2010).

    [8] J ELLINGSON R, C BEARD M, C JOHNSON J. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots.. Nano Lett., 5, 865-871(2005).

    [9] I KLIMOV V, M AGRANOVICH V, D SCHALLER R. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states.. Nat. Phys., 1, 189-194(2005).

    [10] S HU J, J DU, Z DU. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%.. J. Am. Chem. Soc., 138, 4201-4209(2016).

    [11] G JI, D GUAN, Z LIU. Ag2S quantum dots and N3 dye co-sensitized TiO2, nanotube arrays for a solar cell.. Appl. Surf. Sci., 282, 695-699(2013).

    [12] Y LIU, J WANG. Co-sensitization of TiO2, by PbS quantum dots and dye N719 in dye-sensitized solar cells. Thin Solid Films., 518, E54-E56(2010).

    [13] J GAO, Z ZHANG, Y YANG. Black phosphorus based photocathodes in wide band bifacial dye-sensitized solar cells. Adv. Mater., 28, 8937-8944(2016).

    [14] Y GUO X, J GAO, Z ZHANG. Highly efficient interfacial layer using SILAR derived Ag2S quantum dots for solid-state bifacial dye-sensitized solar. Mater. Today Energy, 5, 320-330(2017).

    [15] T LANA-VILLARREAL, S GIMENEZ, R GOMEZ. Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells: correlation between cell performance and structural properties. J. Appl. Phys., 108(2010).

    [16] Y CUI, C XIE, T SCHOEN D. Electrical switching and phase transformation in silver selenide nanowires. J. Am. Chem. Soc., 129, 4116-4117(2007).

    [17] A SAHU, D BRAGA, O WASER. Solid-phase flexibility in Ag2Se semiconductor nanocrystals.. Nano Lett., 14, 115-121(2014).

    [18] P JIANG, N ZHU C, L ZHANG Z. Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl. Mater. Interfaces, 5, 1186-1189(2013).

    [19] Y YANG, J GAO, Z ZHANG. Highly efficient Ag2Se quantum dots blocking layer for solid-state dye-sensitized solar cells: size effects on device performances.. Mater. Today Energy, 7, 27-36(2018).

    [20] P YI, C ZHOU, Y YANG. Magnetic field processed solid- state dye-sensitized solar cells with nickel oxide modified agarose electrolyte. J. Power Sources, 243, 919-924(2013).

    [21] Y YANG, Z ZHANG, J GAO. Metal-organic materials as efficient additives in polymer electrolytes for quasi-solid-state dye-sensitized solar cells. J. Alloy. Compd., 726, 1286-1294(2017).

    [22] D DENG, Z ZHANG, Q TIAN. Facile synthesis of Ag2Se quantum dots and their application in dye/Ag2Se co-sensitized solar cells. J. Mater. Sci.,, 52, 12131-12140(2017).

    [23] P GU Y, R CUI, L ZHANG Z. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc., 134, 79-82(2012).

    [24] I GROZDANOV, B PEJOVA, M NAJDOSKI. Chemical bath deposition of nanocrystalline (111) textured Ag2Se thin films. Mater. Lett., 43, 269-273(2000).

    [25] S PHILIP. Synthesis of Ag2S and Ag2Se nanoparticles in self assembled block copolymer micelles and nano-arrays fabrication. Mater Lett., 63, 773-776(2009).

    [26] N SIBIYA P, J MOLOTO M. Effect of precursor concentration and pH on the shape and size of starch capped silver selenide (Ag2Se) nanoparticles. Chalcogenide Lett., 11, 577-588(2014).

    [27] E LEE K, A GOMEZ M, S ELOUATIK. Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir, 26, 9575-9583(2010).

    [28] J LUO, H WEI, Q HUANG. Highly efficient core-shell CuInS-Mn doped CdS quantum dot sensitized solar cells. Chem. Comm., 49, 3881-3883(2013).

    [29] X ZHANG Q, M HUANG X, X HU. Aqueous colloidal CuInS2 for quantum dot sensitized solar cells. J. Mater. Chem., 21, 15903-15905(2011).

    [30] C CUI, W QIU Y, H ZHAO J. A comparative study on the quantum-dot-sensitized, dye-sensitized and co-sensitized solar cells based on hollow spheres embedded porous TiO2 photoanodes. Electrochim. Acta, 173, 551-558(2015).

    [31] J LI S, L HE C, M REN F. Electrolyte for quantum dot-sensitized solar cells assessed with cyclic voltammetry. Sci. China-Mater., 58, 490-495(2015).

    [32] M SHALOM, S DOR, S RUHLE. Core CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. J. Phys. Chem. C, 11, 3895-3898(2009).

    [33] J BISQUERT, M SERO I. Breakthroughs in the development of semiconductor-sensitized solar cells. J. Phys. Chem. Lett., 1, 3046-3052(2010).

    [34] Z LAN, S ZHANG, X WU W. An efficient method to prepare high-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays and TiO2 quantum dot blocking layers. J. Phys. Chem. C., 20, 2643-2650(2016).

    [35] J LI, Z LI, S WANG. Great improvement of photoelectric property from co-sensitization of TiO2 electrodes with CdS quantum dots and dye N719 in dye-sensitized solar cells. Mater. Res. Bull., 48, 2566-2570(2013).

    [36] B XU, K ZHANG X, H WU J. The influence of blocking layer on the photovoltaic properties of dye-sensitized solar cells. Journal of Function Materials, 39, 1703-1709(2008).

    [37] P BIAGINI, C LELII, G BAWENDI M. Enhanced photovoltaic performance with co-sensitization of quantum dots and an organic dye in dye-sensitized solar cells. J. Mater. Chem. A, 2, 18375-18382(2014).

    [38] Y YANG, Z ZHANG, J GAO. Bifacial quasi-solid-state dye-sensitized solar cells with poly (vinyl pyrrolidone)/polyaniline transparent counter electrode. Nano Energy, 26, 123-130(2016).

    [39] H ELBOHY, A THAPA, P POUDEL. Vanadium oxide as new charge recombination blocking layer for high efficiency dye-sensitizedsolar cells. Nano Energy, 13, 368-375(2015).

    [40] W WANG, Y YANG. Effects of incorporating PbS quantum dots in perovskite solar cells based on CH3NH3PbI3. J. Power Sources, 293, 577-584(2015).

    [41] J FRANK A, D LAGEMAAT J V. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J. Phys. Chem. B, 105, 11194-11205(2001).

    [42] D ZHANG, T YOSHIDA, T OEKERMANN. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B, 108, 2227-2235(2004).

    [43] A MIEDANER, K ZHU, R NEALE N. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett., 7, 69-74(2007).

    Ying YANG, De-Qun PAN, Zheng ZHANG, Tian CHEN, Xiao-Min HAN, Li-Song ZHANG, Xue-Yi GUO, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Photovoltaic Performance of Ag2Se Quantum Dots Co-sensitized Solid-state Dye-sensitized Solar Cells[J]. Journal of Inorganic Materials, 2019, 34(2): 137
    Download Citation