• Infrared and Laser Engineering
  • Vol. 51, Issue 5, 20210326 (2022)
Jiawei Chen1、2, Yudong Li1, Liya Ma1, Yu Li3, and Qi Guo1
Author Affiliations
  • 1Key Laboratory of Functional Materials and Device for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/IRLA20210326 Cite this Article
    Jiawei Chen, Yudong Li, Liya Ma, Yu Li, Qi Guo. Radiation effect of 850 nm vertical-cavity surface-emitting laser[J]. Infrared and Laser Engineering, 2022, 51(5): 20210326 Copy Citation Text show less
    References

    [1] H X Tong, C Z Tong, Z Y Wang, et al. Advances in the technology of 850 nm high-speed vertical cavity surface emitting lasers (Invited). Infrared and Laser Engineering, 49, 20201077(2020).

    [2] J J Shi, L Qin, Y Q Ning, et al. 850 nm vertical cavity surface-emitting laser arrays. Optics and Precision Engineering, 20, 17-23(2012).

    [3] X Liu, Y Xue, H C Xu. Design and test of 4.25 Gbps optical transceiver. Chinese Optics, 5, 77-82(2012).

    [4] R J Srour, J W Palko. Displacement damage effects in irradiated semiconductor devices. IEEE Trans Nucl Sci, 60, 1740-1766(2013).

    [5] J Feng, Y D Li, L Wen, et al. Degradation mechanism of star sensor performance caused by radiation damage of CMOS image sensor. Infrared and Laser Engineering, 49, 20190555(2020).

    [6] H W Xu, Y Q Ning, Y G Zeng, et al. Design and epitaxial growth of quantum-well for 852 nm laser diode. Optics and Precision Engineering, 21, 590-597(2013).

    [7] Q Wang, Yun Liu, L J Wang. Design of In P-based quantum cascade laser with high power and short wavelength. Chinese Optics, 5, 83-91(2012).

    [8] E W Taylor, A H Paxton, H Schone, et al. In vacuo responses of an AlGaAs vertical cavity surface emitting laser irradiated by 4.5 MeV protons. IEEE Trans Nucl Sci, 45, 1514-1517(1998).

    [9] M Boutillier, Gauthier-Lafaye, O S Bonnefont, et al. Electron irradiation effects on Al-free laser diodes emitting at 852 nm. IEEE Trans Nucl Sci, 54, 1110-1114(2007).

    [10] S Y Huang, M B Liu, Z G Xiao, et al. Study on displacement damage effects of laser diode. Semiconductor Optoelectronics, 32, 195-199(2011).

    [11] F Lei, P Truscott, C S RDyer, et al. Mulassis: A Geant4-based multilayered shielding simulation tool. IEEE Trans Nucl Sci, 49, 2788-2793(2002).

    [12] A H Johnston. Radiation effects in optoelectronic devices. IEEE Trans Nucl Sci, 60, 2054-2073(2013).

    [13] B D Evans, H E Hager, B W Hughlock. 5.5-MeV proton irradiation of a strained-quantum-well laser-diode and a multiple-quantum-well broad-band LED. IEEE Trans Nucl Sci, 40, 1645-1654(1993).

    [14] Z W Xu, Y Qu, Y Z Wang, et al. Simulation analysis of high power asymmetric 980 nm broad-waveguide diode lasers. Infrared and Laser Engineering, 43, 1094-1098(2014).

    [15] L C Kimerling. Recombination enhanced defect reactions. Solid-state Electron, 21, 1391-1401(1978).

    Jiawei Chen, Yudong Li, Liya Ma, Yu Li, Qi Guo. Radiation effect of 850 nm vertical-cavity surface-emitting laser[J]. Infrared and Laser Engineering, 2022, 51(5): 20210326
    Download Citation