• Photonics Research
  • Vol. 10, Issue 7, 1640 (2022)
Yuan Zhou1、2, Chang-Sheng Hu2, Dong-Yan Lü1, Xin-Ke Li1, Hai-Ming Huang1, Yong-Chen Xiong1, and Xin-You Lü2、*
Author Affiliations
  • 1School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
  • 2School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1364/PRJ.459794 Cite this Article Set citation alerts
    Yuan Zhou, Chang-Sheng Hu, Dong-Yan Lü, Xin-Ke Li, Hai-Ming Huang, Yong-Chen Xiong, Xin-You Lü. Synergistic enhancement of spin–phonon interaction in a hybrid system[J]. Photonics Research, 2022, 10(7): 1640 Copy Citation Text show less
    References

    [1] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, A. Small. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett., 83, 4204-4207(1999).

    [2] M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, J. I. Cirac. Universal quantum transducers based on surface acoustic waves. Phys. Rev. X, 5, 031031(2015).

    [3] C. Junge, D. O’Shea, J. Volz, A. Rauschenbeutel. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett., 110, 213604(2013).

    [4] Y.-X. Liu, J. Q. You, L. F. Wei, C. P. Sun, F. Nori. Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett., 95, 087001(2005).

    [5] M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, J. Wrachtrup. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater., 3, 38-51(2018).

    [6] N. Yao, L. Jiang, A. Gorshkov, P. Maurer, G. Giedke, J. Cirac, M. Lukin. Scalable architecture for a room temperature solid-state quantum information processor. Nat. Commun., 3, 800(2012).

    [7] K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, W. J. Munro. Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X, 4, 031022(2014).

    [8] G.-Q. Zhang, Z. Chen, D. Xu, N. Shammah, M. Liao, T.-F. Li, L. Tong, S.-Y. Zhu, F. Nori, J. Q. You. Exceptional point and cross-relaxation effect in a hybrid quantum system. PRX Quantum, 2, 020307(2021).

    [9] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien. Quantum computers. Nature, 464, 45-53(2010).

    [10] L. Buluta, F. Nori. Quantum simulators. Science, 326, 108-111(2009).

    [11] I. M. Georgescu, S. Ashhab, F. Nori. Quantum simulation. Rev. Mod. Phys., 86, 153-185(2014).

    [12] J. Cai, A. Retzker, F. Jelezko, M. B. Plenio. A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys., 9, 168-173(2013).

    [13] Z.-L. Xiang, S. Ashhab, J. Q. You, F. Nori. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 85, 623-653(2013).

    [14] M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, P. E. Barclay. Dissipative and dispersive optomechanics in a nanocavity torque sensor. Phys. Rev. X, 4, 021052(2014).

    [15] H. Zhou, J. Choi, S. Choi, R. Landig, A. M. Douglas, J. Isoya, F. Jelezko, S. Onoda, H. Sumiya, P. Cappellaro, H. S. Knowles, H. Park, M. D. Lukin. Quantum metrology with strongly interacting spin systems. Phys. Rev. X, 10, 031003(2020).

    [16] M. Mitchell, D. P. Lake, P. E. Barclay. Optomechanically amplified wavelength conversion in diamond microcavities. Optica, 6, 832-838(2019).

    [17] A. Reiserer, G. Rempe. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys., 87, 1379-1418(2015).

    [18] A. Nunnenkamp, K. Børkje, S. M. Girvin. Single-photon optomechanics. Phys. Rev. Lett., 107, 063602(2011).

    [19] M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, P. E. Barclay. Single-crystal diamond low-dissipation cavity optomechanics. Optica, 3, 963-970(2016).

    [20] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller. Chiral quantum optics. Nature, 541, 473-480(2017).

    [21] I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, P. Lodahl. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol., 10, 775(2015).

    [22] Y. Zhou, D.-Y. Lü, W.-Y. Zeng. Chiral single-photon switch-assisted quantum logic gate with a nitrogen-vacancy center in a hybrid system. Photon. Res., 9, 405-415(2021).

    [23] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. L. Hollenberg. The nitrogen-vacancy colour centre in diamond. Phys. Rep., 528, 1-45(2013).

    [24] N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, R. L. Walsworth. Solid-state electronic spin coherence time approaching one second. Nat. Commun., 4, 1743(2013).

    [25] P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, D. J. Twitchen. Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys., 6, 249-253(2010).

    [26] W. Xiong, J. Chen, B. Fang, M. Wang, L. Ye, J. Q. You. Strong tunable spin-spin interaction in a weakly coupled nitrogen vacancy spin-cavity electromechanical system. Phys. Rev. B, 103, 174106(2021).

    [27] X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, K. Nemoto. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature, 478, 221-224(2011).

    [28] P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, R. G. Beausoleil. Hybrid nanocavity resonant enhancement of color center emission in diamond. Phys. Rev. X, 1, 011007(2011).

    [29] Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, D. Esteve. Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett., 105, 140502(2010).

    [30] D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, A. S. Sørensen. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. Phys. Rev. Lett., 105, 210501(2010).

    [31] D. A. Golter, T. K. Baldwin, H. Wang. Protecting a solid-state spin from decoherence using dressed spin states. Phys. Rev. Lett., 113, 237601(2014).

    [32] P.-B. Li, Y. Zhou, W.-B. Gao, F. Nori. Enhancing spin-phonon and spin-spin interactions using linear resources in a hybrid quantum system. Phys. Rev. Lett., 125, 153602(2020).

    [33] P.-B. Li, Z.-L. Xiang, P. Rabl, F. Nori. Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett., 117, 015502(2016).

    [34] S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, M. D. Lukin. Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing. Phys. Rev. Lett., 110, 156402(2013).

    [35] D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, H. Wang. Optomechanical quantum control of a nitrogen-vacancy center in diamond. Phys. Rev. Lett., 116, 143602(2016).

    [36] J. Teissier, A. Barfuss, P. Appel, E. Neu, P. Maletinsky. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett., 113, 020503(2014).

    [37] P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, F.-L. Li. Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities. Phys. Rev. Appl., 4, 044003(2015).

    [38] W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, M. Feng. Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit. Phys. Rev. A, 83, 022302(2011).

    [39] Y. Zhou, D.-Y. Lü, G.-H. Wang, Y.-H. Fu, M.-Y. He, H.-T. Ren. Improvement on the manipulation of a single nitrogen-vacancy spin and microwave photon at single-quantum level. Commun. Theor. Phys., 73, 065101(2021).

    [40] Y. Zhou, B. Li, X.-X. Li, F.-L. Li, P.-B. Li. Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions. Phys. Rev. A, 98, 052346(2018).

    [41] Y. Zhou, S.-L. Ma, B. Li, X.-X. Li, F.-L. Li, P.-B. Li. Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system. Phys. Rev. A, 96, 062333(2017).

    [42] D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, H. Wang. Coupling a surface acoustic wave to an electron spin in diamond via a dark state. Phys. Rev. X, 6, 041060(2016).

    [43] D. A. Golter, H. Wang. Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond. Phys. Rev. Lett., 112, 116403(2014).

    [44] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [45] M. Cotrufo, A. Fiore, E. Verhagen. Coherent atom-phonon interaction through mode field coupling in hybrid optomechanical systems. Phys. Rev. Lett., 118, 133603(2017).

    [46] D. Rugar, P. Grütter. Mechanical parametric amplification and thermomechanical noise squeezing. Phys. Rev. Lett., 67, 699-702(1991).

    [47] S. D. Siena, A. D. Lisi, F. Illuminati. Quadrature-dependent Bogoliubov transformations and multiphoton squeezed states. Phys. Rev. A, 64, 063803(2001).

    [48] Y. Wu, R. Côté. Quadrature-dependent Bogoliubov transformations and multiphoton squeezed states. Phys. Rev. A, 66, 025801(2002).

    [49] X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, F. Nori. Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett., 114, 093602(2015).

    [50] A. Szorkovszky, A. C. Doherty, G. I. Harris, W. P. Bowen. Mechanical squeezing via parametric amplification and weak measurement. Phys. Rev. Lett., 107, 213603(2011).

    [51] M.-A. Lemonde, N. Didier, A. A. Clerk. Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification. Nat. Commun., 7, 11338(2016).

    [52] J.-Q. Liao, K. Jacobs, F. Nori, R. W. Simmonds. Modulated electromechanics: large enhancements of nonlinearities. New J. Phys., 16, 072001(2014).

    [53] A. Szorkovszky, A. A. Clerk, A. C. Doherty, W. P. Bowen. Mechanical entanglement via detuned parametric amplification. New J. Phys., 16, 063043(2014).

    [54] C. Leroux, L. C. G. Govia, A. A. Clerk. Enhancing cavity quantum electrodynamics via antisqueezing: synthetic ultrastrong coupling. Phys. Rev. Lett., 120, 093602(2018).

    [55] W. Ge, B. C. Sawyer, J. W. Britton, K. Jacobs, J. J. Bollinger, M. Foss-Feig. Trapped ion quantum information processing with squeezed phonons. Phys. Rev. Lett., 122, 030501(2019).

    [56] W. Qin, A. Miranowicz, P.-B. Li, X.-Y. Lü, J. Q. You, F. Nori. Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification. Phys. Rev. Lett., 120, 093601(2018).

    [57] S. C. Burd, R. Srinivas, H. M. Knaack, W. Ge, A. C. Wilson, D. J. Wineland, D. Leibfried, J. J. Bollinger, D. T. C. Allcock, D. H. Slichter. Quantum amplification of boson-mediated interactions. Nat. Phys., 17, 898-902(2021).

    [58] J. Zhang, B. Peng, S. Kim, F. Monifi, X. Jiang, Y. Li, P. Yu, L. Liu, Y.-X. Liu, A. Alú, L. Yang. Optomechanical dissipative solitons. Nature, 600, 75-80(2021).

    [59] V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, H. Wang. Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett., 107, 133601(2011).

    [60] X.-L. Dong, P.-B. Li, T. Liu, F. Nori. Unconventional quantum sound-matter interactions in spin-optomechanical-crystal hybrid systems. Phys. Rev. Lett., 126, 203601(2021).

    [61] M. C. Kuzyk, H. Wang. Scaling phononic quantum networks of solid-state spins with closed mechanical subsystems. Phys. Rev. X, 8, 041027(2018).

    [62] V. Peano, C. Brendel, M. Schmidt, F. Marquardt. Topological phases of sound and light. Phys. Rev. X, 5, 031011(2015).

    [63] S. Kim, X. Xu, J. M. Taylor, G. Bahl. Dynamically induced robust phonon transport and chiral cooling in an optomechanical system. Nat. Commun., 8, 205(2017).

    [64] B.-Y. Xie, G.-X. Su, H.-F. Wang, H. Su, X.-P. Shen, P. Zhan, M.-H. Lu, Z.-L. Wang, Y.-F. Chen. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Phys. Rev. Lett., 122, 233903(2019).

    [65] D. Awschalom. Development of quantum interconnects (QUICS) for next-generation information technologies. PRX Quantum, 2, 017002(2021).

    [66] M. Barra-Burillo, U. Muniain, S. Catalano, M. Autore, F. Casanova, L. E. Hueso, J. Aizpurua, R. Esteban, R. Hillenbrand. Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime. Nat. Commun., 12, 6206(2021).

    [67] J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, O. J. Glembocki. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics, 4, 44-68(2015).

    [68] C. Joshi, J. Larson, M. Jonson, E. Andersson, P. Öhberg. Entanglement of distant optomechanical systems. Phys. Rev. A, 85, 033805(2012).

    [69] W. K. Hensinger, D. W. Utami, H.-S. Goan, K. Schwab, C. Monroe, G. J. Milburn. Ion trap transducers for quantum electromechanical oscillators. Phys. Rev. A, 72, 041405(2005).

    [70] R.-X. Chen, L.-T. Shen, S.-B. Zheng. Dissipation-induced optomechanical entanglement with the assistance of Coulomb interaction. Phys. Rev. A, 91, 022326(2015).

    [71] X.-F. Zhang, Y.-C. Wen, Y. Yu. Three-body interactions on a triangular lattice. Phys. Rev. B, 83, 184513(2011).

    [72] A. J. Daley, J. M. Taylor, S. Diehl, M. Baranov, P. Zoller. Atomic three-body loss as a dynamical three-body interaction. Phys. Rev. Lett., 102, 040402(2009).

    [73] K. W. Mahmud, E. Tiesinga, P. R. Johnson. Dynamically decoupled three-body interactions with applications to interaction-based quantum metrology. Phys. Rev. A, 90, 041602(2014).

    [74] F. Petiziol, M. Sameti, S. Carretta, S. Wimberger, F. Mintert. Quantum simulation of three-body interactions in weakly driven quantum systems. Phys. Rev. Lett., 126, 250504(2021).

    [75] F. K. Malinowski, F. Martins, P. D. Nissen, S. Fallahi, G. C. Gardner, M. J. Manfra, C. M. Marcus, F. Kuemmeth. Symmetric operation of the resonant exchange qubit. Phys. Rev. B, 96, 045443(2017).

    [76] V. Srinivasa, J. M. Taylor, C. Tahan. Entangling distant resonant exchange qubits via circuit quantum electrodynamics. Phys. Rev. B, 94, 205421(2016).

    [77] C.-G. Liao, X. Shang, H. Xie, X.-M. Lin. Dissipation-driven entanglement between two microwave fields in a four-mode hybrid cavity optomechanical system. Opt. Express, 30, 10306-10316(2022).

    [78] A. Kronwald, F. Marquardt, A. A. Clerk. Arbitrarily large steady-state bosonic squeezing via dissipation. Phys. Rev. A, 88, 063833(2013).

    [79] E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, K. C. Schwab. Quantum squeezing of motion in a mechanical resonator. Science, 349, 952(2015).

    [80] A. Sørensen, K. Mølmer. Quantum computation with ions in thermal motion. Phys. Rev. Lett., 82, 1971-1974(1999).

    [81] A. Sørensen, K. Mølmer. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A, 62, 022311(2000).

    [82] H. Takahashi, P. Nevado, M. Keller. Mølmer-Sørensen entangling gate for cavity QED systems. J. Phys. B, 50, 195501(2017).

    [83] X. Jiang, L. Yang. Optothermal dynamics in whispering-gallery microresonators. Light Sci. Appl., 9, 24(2020).

    [84] L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, Y.-F. Xiao. High-Q chaotic lithium niobate microdisk cavity. Opt. Lett., 43, 2917-2920(2018).

    [85] R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, Y. Cheng. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116-4119(2018).

    [86] Z. Fang, H. Luo, J. Lin, M. Wang, J. Zhang, R. Wu, J. Zhou, W. Chu, T. Lu, Y. Cheng. Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk. Opt. Lett., 44, 5953-5956(2019).

    [87] A. Faraon, C. Santori, Z. Huang, V. M. Acosta, R. G. Beausoleil. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett., 109, 033604(2012).

    [88] P. Lodahl, S. Mahmoodian, S. Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys., 87, 347-400(2015).

    [89] J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, E. L. Hu. Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity. Appl. Phys. Lett., 105, 261101(2014).

    [90] A. Khalid, K. Chung, R. Rajasekharan, D. W. Lau, T. J. Karle, B. C. Gibson, S. Tomljenovic-Hanic. Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification. Sci. Rep., 5, 11179(2015).

    [91] G. Burkard, V. O. Shkolnikov, D. D. Awschalom. Designing a cavity-mediated quantum cphase gate between NV spin qubits in diamond. Phys. Rev. B, 95, 205420(2017).

    [92] T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, J. Majer. Solid-state electron spin lifetime limited by phononic vacuum modes. Nat. Mater., 17, 313-317(2018).

    [93] J. R. Johansson, P. D. Nation, F. Nori. QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 183, 1760-1772(2012).

    [94] J. R. Johansson, P. D. Nation, F. Nori. QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 184, 1234-1240(2013).

    Yuan Zhou, Chang-Sheng Hu, Dong-Yan Lü, Xin-Ke Li, Hai-Ming Huang, Yong-Chen Xiong, Xin-You Lü. Synergistic enhancement of spin–phonon interaction in a hybrid system[J]. Photonics Research, 2022, 10(7): 1640
    Download Citation