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An investigation to significantly enhance coupling to nitrogen−vacancy (NV) centers at a single-quanta level is of
great interest to further explore its applications in quantum information processing (QIP). This study explores a
joint scheme to further enhance NV–phonon coherent coupling with two methods working together in hybrid
optomechanical systems. Both methods are mechanics-induced mode field coupling (MFC) that lead, respectively,
to the modification of the spatial distribution of the optical field and the mechanical parametric amplification
(MPA) realized by modulating the mechanical spring constant in time. With the joint assistance of MFC and
MPA, the coherent coupling between the NV spin and one supermode of the mechanical resonators (MRs) can be
further significantly enhanced with the rate ∝ ncaver . Several potential applications are also discussed in this work.
With the ultimate goal to enhance the coupling to NV spin at a single-quanta level, this attempt may provide a
promising spin–phonon platform to implement more active control. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.459794

1. INTRODUCTION

Implementing a controllable and strong enough coupling to a
quantum unit at a single-quanta level is a very desirable basic
goal in quantum information processing (QIP) [1–8]. This type
of strong coupling can first ensure complete and fast control of
the qubits directly or indirectly at the single-quanta level [9,10],
which also underlies applications of quantum simulation
[11,12], manipulation [13,14], and metrology [15]. Second,
such interactions can also be applied to explore many interesting
and essential physics [16], such as single photon or phonon tech-
nology [17–19] and chiral quantum science [20–22].

Working as a point defect in diamond, the nitrogen-vacancy
(NV) center integrated in a hybrid quantum system has re-
cently emerged as one of the leading candidates for QIP. It
is desirable thanks to its excellent spin properties [23–26], such
as solid-state spins with atom-like properties and without an
additional trap device [27,28], precise implantation and easy
scalability [29,30], and longer coherence times even at ambient
conditions [24,25,31], in addition to the convenient prepara-
tion, manipulation, and readout of its quantum state [32,33].
Significant theoretical and experimental investigations have
been carried out using NV spins in hybrid systems to realize
quantum simulation and quantum state manipulating [34–41].
In recent years, more and more attention has been devoted to
the application of NV centers in the quantum acoustics area,
which also leads to a growing interest in studying and exploiting

coherent spin–phonon coupling [2,42,43]. However, it is still a
huge challenge to significantly enhance the spin–phonon cou-
pling at a single-quanta level by the means currently avail-
able [32].

In this work, we present a combined scheme to enhance
the spin–phonon coupling in a hybrid setup, which consists
of a single NV spin and three optical cavities dispersively
coupled with three mechanical resonators (MRs) [44]. To fur-
ther enhance the spin–phonon coupling in this spin–cavity–
resonator tripartite system, there are two key points in our
proposal. First, we can modify the spatial distribution of the
electric field ~E�x, y, z� in the cavity through mechanical
displacement, which is named as the mode field coupling
(MFC) [45]. Importantly, the spin–phonon interaction can
be controlled and enhanced by the optical field intensity with
the rate Λ ∝ ~E�x, y, z� ∼ n̄cav, resulting in optically controlled
spin–phonon coherent manipulation. Meanwhile, we apply the
mechanical parametric amplification (MPA) to the MR by
modulating its spring constant in time [32,46–56]. In the
squeezed frame, we can further enhance the spin–phonon cou-
pling with an exponential rate Λ ∝ er in this tripartite system
[32,57]. By taking advantage of the joint assistance of MFC
and MPA, we have achieved the goal to further strengthen the
coherent spin–phonon coupling at a single-quanta level, com-
pared to the previous investigations of this issue. In addition,
we also have discussed several potential applications based on
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this tripartite interaction system. We believe that this scheme
may provide a promising phonon-mediated platform to imple-
ment more active control of NV spins.

2. MFC AND MPA

A. MFC
In a traditional cavity quantum electrodynamics (C-QED) sys-
tem, the realistic dipole coupling to a single quantum emitter
(QE) can be written as g � −~d · ~E�x, y, z�, with the emitter’s
transition dipole moment ~d and the electric field ~E�x, y, z�. We
note that its coupling strength is determined through a given
electric field at the certain position ~r0 � �x, y, z�, and it is
impossible to obtain a controllable or enhanced QE–photon
coherent coupling in such a system. The MFC can help us to
deal with this problem, and its core concept originates from the
so-called optomechanical system [44], which indicates that
the resonator’s displacement x̂ � xzpf �b̂� b̂†� will also affect
the cavity frequency ωc�x̂� � ωc � x̂∂ωc∕∂x̂ � � � � with the
dispersive coupling g0 ≈ −�∂ωc∕∂x̂�xzpf . Here, we state xzpf
and b̂ are, respectively, the zero-point fluctuation and phonon
annihilation operator. In addition, we take advantage of the
basic idea of the ion trap system, and then we may establish
a triple QE–photon–phonon coupled system (namely MFC)
that uses the so-called sideband engineering. Importantly, this
design will offer a mechanics-induced variation of the spatial
distribution of the target cavity field. Going in this direction,
we can obtain a mechanic mode-dependent QE-cavity coupling
even at the given position and electric field. As a direct conse-
quence, the relevant coupling strength of the QE to cavity
mode can be expressed as g�x̂� � g�0� � ϵx̂ � ϵ2x̂2∕2� � � �≈
g�0� � ϵ�b̂� b̂†�, where the MFC coupling is defined as
ϵ � xzpf �∂g∕∂x̂�x̂�0. With an assumed special condition
g�0� � 0, we can then get this triple interaction as
ĤMFC ∼ g�x̂��âσ̂� � h:c:� ≈ ϵ�b̂� b̂†��âσ̂� � â†σ̂−�. When
we generally make a classical assumption of this cavity mode
with â ≈ α ≈ ffiffiffiffiffiffiffincav

p
, we can obtain an enhanced QE-phonon

coupling ĤMFC ≈ ϵ
ffiffiffiffiffiffiffi
ncav

p �b̂� b̂†��σ̂� � σ̂−�, which results in
the MFC-assisted enhancement of the QE-phonon interaction.
With the continuous development of the optomechanical
technology and applications [58], we have no doubt about
the feasibility of this physical mechanism in the future.

We stress that this type of MFC coupling mechanism may
be a general proposal, and we can demonstrate it in the tradi-
tional optomechanical system and also can introduce it to other
optomechanics-like systems; the photon–magnon (lattice) sys-
tem and the photon–phonon (lattice) system, for example.

B. MPA
Parametric amplification [including optical parametric amplifi-
cation (OPA) and MPA] has been another hot topic related to
the enhancement of coherent coupling since it was first pro-
posed in an optomechanical system. In particular, a milestone
achievement on this topic has also been reported and demon-
strated in a hybrid ion trap system. This type of progress re-
inforces our confidence in the feasibility of the OPA or MPA,
and we believe that in this work MPA will be a more feasible
choice to further enhance the coherent coupling to a single QE.
To realize MPA, the core point lies in the modulation of the

time-dependent spring constant [32,50]; i.e., k � k0 �
Δk cos 2ωpt . Therefore, the Hamiltonian of the mechanical
resonator is Ĥm � p̂2∕2m� kx̂2∕2, and its quantized expres-
sion is Ĥm � ωmb̂

†b̂ − Ωp�b̂†2e2iωpt � b̂2e−2iωpt�∕2. Then, we
can transform this mechanical mode into the Bogoliubov mode
(b̂† → b̂†s with the squeezing parameter r) and diagonalize
this Hamiltonian in a squeezed frame. Next, we can get an
exponentially enhanced coupling strength with the expression
ĤMFC ≈ ϵer

ffiffiffiffiffiffiffi
ncav

p �b̂s � b̂†s ��σ̂� � σ̂−�.
In short, we believe that the MFC and MPA are both gen-

eral physical ideas, and that this proposal can first show a joint
cooperation of the MFC and MPA via a hybrid design to fur-
ther enhance the EQ–phonon coupling. To induce this joint
enhancement effect of the spin–phonon coupling to a feasible
hybrid quantum system, we believe that optomechanics
[44,58] or an optomechanics-like system will be a suitable
choice; for example, the lattice of a photon–phonon coupling
system or a hybrid optics–acoustics system [35,59–67]. Here,
let’s consider the traditional optomechanical system and then
discuss this joint scheme in detail.

3. POTENTIAL SCHEME FOR THE JOINT MFC
AND MPA

We have designed this hybrid setup, as illustrated in Fig. 1(a),
with three identical optical cavities with frequency ωc arranged
one by one, and these optical modes are named, respectively,
modes âL, âT , and âR . The central cavity is symmetrically

Fig. 1. Schematic of our hybrid system. (a) Three identical optical
cavities with frequency ωc are arranged in a row, and the central cavity
couples to the left cavity and the right cavity with the identical cou-
pling strength J , through exchanging photons via optical fibers [68].
Each cavity dispersively couples to the corresponding MR with a cou-
pling strength g0. The additional second-order nonlinear pump is ap-
plied to each MR, which can be realized by modulating the spring
constant in time. The central mechanical resonator is additionally
coupled to the other two bilateral MRs with the same coupling rate
Jm. A single NV center is placed inside the central cavity and interacts
with this cavity mode with the coupling strength g . (b) Energy-level
diagram illustrating the blue and red sideband transitions for the
tripartite interaction quantum system.
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connected to the two bilateral cavities with identical optical
fibers. Thus, through the exchange–photon process, the central
cavity mode âT will interact with the two bilateral cavities with
the same coupling rate J . Each cavity also dispersively couples
to an identical MR with the same coupling rate g0. For these
three identical MRs, the fundamental frequencies are all ωm,
and these mechanical modes are correspondingly named b̂L,
b̂T , and b̂R . Moreover, we add an additional second-order non-
linear pump on each resonator, which can be implemented
easily through modulation of the mechanical spring constant
in time. The central MR b̂T additionally couples to the other
two bilateral MRs b̂L and b̂R with the same coupling rate Jm.
The coupling between the two mechanical modes can actually
be realized by the Coulomb interaction between the charged
mechanical media [69,70].

In addition, as illustrated in Fig. 1(a), a single NV center is
placed inside the central cavity. In the optical frequency do-
main, the optical mode âT will induce the NV spin’s quantum
transition between the excited state jEyi and the ground state
jms � 0i with a coupling rate g . The energy level structure of a
single NV center is shown in Fig. 1(b). The ground state
and the excited state are denoted as jms � 0i ≡ j0i and
jEyi ≡ j1i, and the optical transition frequency between them
is ωA ∼ 2π × 470 THz. For a single NV center, this two-level
system fj0i, j1ig can be considered as a spin-1/2 particle with
Pauli matrix definitions σ̂z ≡ �j1ih1j − j0ih0j�∕2, σ̂� ≡ j1ih0j,
and σ̂− ≡ j0ih1j.

Therefore, according to the Appendices A–C, we can get the
total Hamiltonian to describe this hybrid system �ℏ � 1� by

ĤTotal � Ĥ 1 � Ĥ 2 � Ĥ 3, (1)

where

Ĥ 1 �
X

j�L,R,T

�
Δmb̂

†
j b̂j −

Ωp

2
�b̂2j � b̂†2j �

�

� Jmb̂
†
T �b̂L � b̂R� � h:c:,

Ĥ 2 �
X

j�L,R,T

ωc â
†
j âj �ωAσ̂z � gâ†T σ̂− � Jâ†T �âL � âR� � h:c:,

Ĥ 3 �
X

j�L,R,T

�−g0â†j âj�b̂†j exp iωpt � h:c:��:

In Eq. (1), under the rotating frame with frequency ωp, the
first item Ĥ 1 is the Hamiltonian to describe these three MRs
with the second-order nonlinear interaction, including their
pairwise interactions between the central mode b̂T and the bi-
lateral modes b̂R,L. The second item Ĥ 2 describes the NV spin
and optical cavities, with the spin–cavity interaction and the
pairwise interactions between the central mode âT and the bi-
lateral modes âR,L. The last item Ĥ 3 means the Hamiltonian to
describe the dispersive interactions between the cavities and the
corresponding mechanical resonators.

According to Appendix D, we can simplify the total
Hamiltonian for this system, and obtain an effective
Hamiltonian with the tripartite interactions (spin–photon–
phonon):

Ĥ eff ≈ Δσ̂z � ΔS
mb̂

†
0b̂0 �

ggS0
2J

�b̂0 � b̂†0��â†0σ̂− � h:c:�: (2)

In view of this Hamiltonian in the squeezed frame, its ef-
fective triple coupling strength is strengthened with the rate
er∕2 via the MPA process. We also believe this type of en-
hanced three-body interaction is very important and interest-
ing, especially for the application of QIP, quantum simulation,
and quantum manipulation [71–76].

4. ENHANCING THE SPIN–PHONON COUPLING

We consider that the cavity is pumped with a large coherent
field with an average photon number n̄cav ≡

ffiffiffiffiffiffiffincav
p

. Therefore,
we can write the cavity field as â0 � n̄cav � δâ0. Neglecting the
quantum fluctuations δâ0 (valid for ncav ≫ 1), we can acquire
the effective Rabi type Hamiltonian

Ĥ eff ≃ Δσ̂z � ΔS
mb̂

†
0b̂0 �

n̄cavggS0
2J

�b̂0 � b̂†0�σ̂x : (3)

Next, in the interaction picture (IP), we transfer Eq. (3) into
an equivalent expression with the relations gS0 � g0e

r cos ωpt
and ωp � Δ − ΔS

m (the red sideband detuning), by discarding
the high frequency oscillation terms:

Ĥ IP
JC ≃ Λ�b̂0σ̂� � b̂†0σ̂−�, (4)

and this is a Jaynes–Cumming (J–C) type Hamiltonian. On the
contrary, when we assume ωp � Δ� ΔS

m (the blue sideband
detuning), we can also achieve the anti J–C model,

Ĥ IP
A−JC ≃ Λ�b̂0σ̂− � b̂†0σ̂��: (5)

Whether it is a J–C model or an anti J–C model, we can get
an enhanced coupling strength with the effective coupling
strength

Λ ≡
n̄cavgg0e

r

4J
: (6)

To enhance the coherent coupling Λ between the NV spin
and supermode b̂0, the cooperation of the MFC and MFA is
superior to the MFC. This is due to the fact that n̄cav ∝

ffiffiffi
P

p
is

limited to the driving power P, which can not be increased arbi-
trarily in a real experiment. For a single NV center, we can
achieve a traditional weak spin–phonon coupling at single
quantum level with the strength λ∕2π ≤ 0.1 MHz. To quan-
tify the enhancement of the spin–phonon coupling, we exploit
the cooperativity C � Λ2∕Γmγ. Here, Γm � nthκm and γ cor-
respond, respectively, to the effective mechanical dissipation
rates and the decay rate of the spin. Note that in presence
of the mechanical amplification, the noise coming from the
mechanical bath is also amplified. To circumvent this detri-
mental effect, a possible strategy is to use the dissipative squeez-
ing approach to keep the mechanical mode in its ground state
in the squeezed frame [49,51,77,78]. This steady-state tech-
nique has already been implemented experimentally [79]. In
this case, we can obtain the engineered effective dissipation rate
ΓS
m in the squeezed frame. Therefore, we can also define the

effective cooperativity C � Λ2∕ΓS
mγ.

In Fig. 2, we plot the spin–phonon coupling enhancement
Λ∕λ and the cooperativity enhancement C , versus the squeez-
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ing parameter r and photon number ncav of the classical driven
field on the mode â0. Increasing the squeezing parameter r and
the photon number ncav, one can achieve a distinct enhance-
ment in the spin–phonon coupling, thus directly giving rise
to the cooperativity enhancement.

Furthermore, in Fig. 3, we also plot the dynamical popula-
tion of the phonon number operator b̂†0b̂0 and the spin operator
σ̂z according to the J–C model [in Eq. (4)] and the anti J-C
model [in Eq. (5)], with the different parameters, such as ncav
and r. The numerical results above show the distinct quantum
dynamics of this spin–phonon system for different cases, in
which the spring constant is modulated or not, and ncav is in-
creased from 5 × 102 to 5 × 104. Therefore, with the joint as-
sistance of the mechanical squeezing (with parameter r) and the
classical driving of the mode â0 (with intensity ncav), the system
can be pumped and driven from the weak-coupling regime to
the strong-coupling regime, or even to the ultrastrong-coupling
regime.

5. ENHANCEMENT OF PHOTON–SPIN–PHONON
INTERACTION

On the other hand, if n̄cav is too weak, the quantum fluctuation
δâ0 will dominate the supermode â0. As a result, we can get the
effective tripartite interaction Hamiltonian from Eq. (2) with
two different kinds of expression in IP. For the first condition,
such as the blue sideband, when the resonance condition sat-
isfies ωp � Δ� ΔS

m, we can also discard the high frequency
oscillation terms, and get the blue sideband effective three-
quantum-system Hamiltonian,

Ĥ IP
Blue ≃ Λ0�σ̂−b̂0â†0 � σ̂�b̂

†
0â0�: (7)

For the second case, such as the red sideband, when the res-
onance condition satisfies ωp � Δ − ΔS

m, discarding the high
frequency oscillation terms, we can get

Ĥ IP
Red ≃ Λ0�σ̂−b̂†0â†0 � σ̂�b̂0â0�: (8)

In this tripartite interaction quantum system, the effective
coupling strength is

Λ0 �
gg0e

r

4J
: (9)

In Fig. 4, we make the simulations on this tripartite inter-
action system according to Eq. (7) and Eq. (8), and then plot
the dynamical population of the phonon number operator
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Fig. 3. Dynamical population of the phonon number b̂†0b̂0 and the
spin operator σ̂z according to (a), (b) the J-C model and (c), (d) the
anti J-C model, with different ncav and r. The parameters are
g0 � 0.001g and J � 10g , the effective mechanical dissipation is
ΓS
m ∼ 0.001g , and the NV spin decay rate is γ ∼ 0.02g . This system

is initially prepared in state jϕ�0�i � j1imj0is .
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Fig. 2. (a) Spin–phonon coupling enhancement Λ∕λ and (b) coop-
erativity enhancement C versus the squeezing parameter r and the
photon number ncav of the cavity mode â0, with g0 � 0.001g ,
J � 10g , λ∕2π � 0.1 MHz, g∕2π � 1 GHz, the effective mechani-
cal dissipation ΓS

m∕2π ∼ 1 MHz, and the NV spin decay rate
γ∕2π ∼ 15 MHz.
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Fig. 4. (a), (b) Dynamical population of the spin operator σ̂z, num-
ber operators of (c), (d) the optical mode â†0â0 and (e), (f ) the phonon
mode b̂†0b̂0. (a), (c), and (e) correspond to the blue sideband condition,
and (b), (d), and (f ) correspond to the red sideband condition, with
different squeezing parameter r. The parameters are g0 ∼ γ, J �
2.8 × 103γ, and g ∼ 70γ, the effective mechanical dissipation and
the cavity decay rate are assumed to be ΓS

m ∼ 0.001γ and κ ∼ 0.1γ,
and the NV spin decay rate is γ∕2π ∼ 15 MHz. This tripartite system
is initially prepared, respectively, in states jψ�0�i � j1ioj0imj0is (blue
sideband) and jψ�0�i � j1ioj1imj0is (red sideband).
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b̂†0b̂0, the photon number operator â†0â0, and the spin operator
σ̂z with the different squeezing parameter r. The numerical
results above evidently show that we can strengthen this tripar-
tite interaction by increasing the squeezing parameter r.

6. APPLICATION OF THIS PROPOSAL

A. Entangling Collective NV Spins Dynamically
In this section, the first potential application for this proposal is
that we can entangle separated NV spins. We assume a certain
number of NV spins are set separately in this central optical
cavity. According to Eq. (3), we can obtain the effective
Hamiltonian as

Ĥ eff ≃ ΔS
mb̂

†
0b̂0 �

X
k

Λk�b̂0 � b̂†0�σ̂kx : (10)

Here, we assume Δ � ωA − ωc � 0, and the effective cou-
pling to the kth NV spin is Λk � n̄kcavgkg0e

r∕4J . We stress that
this inhomogeneous coupling strength is mainly caused by the
differences in the location of NV spins in the cavity, which
maps to the factors n̄kcav and gk. In this scheme, one can reduce
this system disorder through implanting NV spins precisely
with the advanced processing techniques. By discarding this
weak adverse effect, we can rewrite the effective Hamiltonian
in the interaction picture (IP) as

Ĥ IP
eff ≃ Λ�b̂0e−iΔS

mt � b̂†0e
iΔS

mt�Ĵ x : (11)

Here, the coupling is identical Λk ≡ Λ; therefore, we can use
the collective spin operator in the equation above with the def-
inition Ĵ x ≡

P
k σ̂

k
x . We note that this type interaction corre-

sponds to the so-called Mølmer–Sørensen (MS) gate [80,81],
which is used to generate the multiparticle entanglement. Its
system dynamics is governed by the unitary evolution operator
Û IP�t� � exp�−iĤ IP

eff t�. Taking advantage of the Magnus
formula [82], we get Û IP�τ� ≃ exp�−iΛ2Ĵ2xτ∕ΔS

m� when
τ � 2nπ∕ΔS

m for the integer number n. This means that the
mechanical mode is decoupled from the NV spins at this
moment.

Note that because this operator has no contribution from
the mechanical modes, in this instance the system gets
insensitive to the states of the mechanical modes. Starting
from the initial state of the mechanical mode and NV spins
jψ system�0�i � j0imj00 � � � 00is, we can obtain the target en-
tangled state of the collective NV spins with the form
jψNV

τ i��e−iπ∕4j00� � �00is�eiπ∕4�−1�N j11 � � �11is �∕
ffiffiffi
2

p
, which

is the well-known Greenberger–Horne–Zeilinger (GHZ) type
state withN the number of the spins. Next we plot the numeri-
cal simulation result shown in Fig. 5. As illustrated in Fig. 5,
taking a realistic condition such as the NV decay rate and the
mechanical dissipation into consideration, we can quickly en-
tangle NV spins with a high fidelity of more than 0.98 in this
scheme.

B. Local Cooling One Supermode of Triple
Resonators with an NV Ensemble
On the other hand, we stress that another potential application
on this scheme is to cool down the mechanical supermode to its
ground state efficiently with the NV center ensemble (NVE).
Here, we assume a number of NV centers are set inside the
central optical cavity, which form an NVE. Taking the
Eqs. (4) and (10) into consideration, we can obtain the effective
Hamiltonian in IP for this hybrid system:

Ĥ IP
eff ≃

XN
k�1

Λk�b̂0σ̂k� � b̂†0σ̂
k
−�: (12)

Similarly, we can also ignore this weak system disorder ad-
verse effect according to the advanced processing techniques.
Then, we can rewrite this effective Hamiltonian as

Ĥ IP
eff ≃ Λ�b̂0Ĵ� � b̂†0Ĵ−�, (13)

with the collective spin operator Ĵ	 ≡
PN

k�1 σ̂
k
	. In the

condition of weak excitation and N ≫ 1, we can map the col-
lective spin operators Ĵ
 into the boson operators d̂ and d̂ † in
the Holstein–Primakoff representation, with Ĵ� ≃

ffiffiffiffiffi
N

p
d̂ †,

Ĵ− ≃
ffiffiffiffiffi
N

p
d̂ , and Ĵ z ≃ �d̂ †d̂ − N

2 �. Then, we can carry out the
goal to efficiently cool down one mechanical supermode

Fig. 5. Dynamical fidelity of the target entangled GHZ state for
four NV spins, in which, the initial state is jψ system�0�i �
j0imj0000is , and the target GHZ state is jψNV

τ i � �e−iπ∕4j0000is�
eiπ∕4j1111is �∕

ffiffiffi
2

p
. The parameters are the squeezing parameter

r ≃ 4.0, g0 ∼ 0.001g , J ∼ 10g , g∕2π ∼ 1.0 GHz, n̄cav ∼ 104, the ef-
fective mechanical dissipation ΓS

m ∼ 0.001γ, and the NV spin decay
rate γ∕2π ∼ 15 MHz.

Fig. 6. Dynamical population of this mechanical supermode b̂0
with the assumption of its initial average phonon number
hb̂†0b̂0i ≃ 50, in which the parameters are the squeezing parameter
r ≃ 2.0, n̄cav ∼ 100, g0 ∼ 0.001g , g ∼ 66γ, J ∼ 10g , the effective
mechanical dissipation ΓS

m ∼ 0.001γ, and the NV spin decay rate
γ∕2π ∼ 15 MHz.
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b̂0 ≡ �b̂SL − b̂SR�∕
ffiffiffi
2

p
to its ground state. As illustrated in Fig. 6,

we can transform this mechanical mode into its quantum
ground state completely at the time of∼ 10

γ through numerically
solving the quantum master equation. This result indicates that
we can implement this cooling process successfully in this
setup. In addition, the two local mechanical modes b̂SL and b̂SR
that consist of the mechanical supermode b̂0 also can be cooled
with the Hamiltonian in Eq. (A3) being realized, as seen in
Fig. 7. Compared to the supermode b̂0, the local mechanical
modes approach their ground state far more slowly. This is due
to the spins inducing the generation of the correlation between
b̂SL and b̂SR , which slowly reduces.

7. EXPERIMENTAL PARAMETERS

To examine the feasibility of our scheme in a realistic experi-
ment, we now discuss the relevant experimental parameters.
We consider a high-quality optical cavity with frequency
ωc∕2π ∼ 470 THz and Q ∼ 106 − 108, and can assume its
coupling strength to a single NV center can reach g∕2π ∼
10 GHz [83–89]. For the MR with a frequency ωm∕2π ∼
1–10 GHz and Q ∼ 105–106, the optic-mechanic coupling
to the cavity mode will be g0∕2π ∼ 1–10 MHz [44]. For a
single NV center, the lifetime of its excited state is about
10 ns, so the spontaneous decay rate of its excited state is about
γ∕2π ∼ 15 MHz [90–92]. Considering the dynamical process
for entangling the NV spins in this work, we can obtain the
GHZ state at the time of ∼0.35 ns. Compared to this time
interval, we think its coherence time is enough to implement
this scheme.

8. CONCLUSION

In summary, we propose a protocol to further enhance the
spin–phonon coupling at the single-quanta level with two
methods jointly working together: the MFC and MPA.
Importantly, in our scheme, we can enhance the coherent
spin–phonon interaction not only by the optical field intensity

with rate ∼n̄cav, but also by the amplified zero-field fluctuation
of the mechanical mode with rate ∼er . In other words, taking
advantage of the joint assistance of both amplifications means
we can realize the goal to further strengthen the coherent spin–
phonon coupling at a single-quanta level in this hybrid system.
In addition, we also have to briefly discuss the potential appli-
cations of this tripartite interaction system. We believe that this
investigation may provide a more promising direction to imple-
ment active control of the spin–phonon coupling at a single
quanta-level.

APPENDIX A: THE HAMILTONIAN OF
MECHANICAL MODES WITH SECOND-ORDER
NONLINEAR INTERACTION

The Hamiltonian for the jth mechanical system with a modu-
lated spring constant can be expressed as

Ĥmj �
p̂2j
2Mj

� 1

2
k0x̂2j �

1

2
k1�t�x̂2j , (A1)

where j � fR,T , Lg and Mj is the effective mass of the jth
mechanical resonator. Expressing the momentum operator p̂j and
the displacement operator x̂j with the oscillator operator âj of
the fundamental oscillating mode and the zero field fluctuation
xzpf �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ∕2Mjωm

p
[i.e., p̂j � −i�Mjℏωm∕2�1∕2�b̂j − b̂†j � and

x̂j � xzpf �b̂†j � b̂j�], we obtain (ℏ � 1), so

Ĥmj � ωmb̂
†
j b̂j −Ωp cos 2ωpt�b̂j � b̂†j �2: (A2)

Here, we assume that these are three identical MRs, with an
intrinsic frequency ωm � ffiffiffiffiffiffiffiffiffiffiffiffiffi

k0∕Mj
p

, the time-dependent spring
constant k1�t� � δk cos 2ωpt, and the nonlinear coefficient
−δkx2zf ∕2 ≡ Ωp. Using the frame rotating with frequency ωp
and dropping the terms (∼b̂†j b̂j) that explicitly oscillate in time,
then we can acquire the Hamiltonian with a second-order non-
linear interaction for the jth mechanical resonator

Ĥmj � Δmb̂
†
j b̂j −

Ωp

2
�b̂2j � b̂†2j �, (A3)

where Δm � ωm − ωp. For simplicity, we assume that Ωp is a
real parameter.

Furthermore, in this scheme, the central mechanical mode
b̂T also interacts with two other bilateral mechanical modes b̂L
and b̂R . Assuming the identical coupling strength is Jm, we can
obtain their Hamiltonian as

Ĥ 1 �
X

j�L,R,T

�
Δmb̂

†
j b̂j −

Ωp

2
�b̂2j � b̂†2j �

�

� Jmb̂
†
T �b̂L � b̂R� � h:c:: (A4)

In this scheme, the coefficient Ωp of this nonlinear interac-
tion item is tunable using the high precision electromagnetic
technology, and the coupling strength Jm between the
mechanical modes can also be modulated via some electrical
means, such as the capacitor method.

Fig. 7. Dynamical evolution of the mechanical population of the
left local mode hb̂S†L b̂SLi (green dashed line), the right local mode
hb̂S†R b̂SRi (black solid line), and the supermode hb̂†0b̂0i (blue solid line)
in the time interval [0, 2∕γ] ([500∕γ, 2000∕γ] in the inset), assuming
both b̂SR and b̂SL are initially in the single phonon state. Other param-
eters are the same as in Fig. 6.
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APPENDIX B: THE HAMILTONIAN OF SPIN–
CAVITY AND CAVITY–CAVITY INTERACTIONS

As illustrated in Fig. 1(a), a single NV center is set inside the
central optical microcavity (mode âT ), and this cavity mode
will induce the transition between the states j0i and j1i. In
addition, this cavity also interacts with another two microcav-
ities (modes âL and âR) through exchanging photons.
Therefore, we can write the corresponding Hamiltonian in
the Schrödinger picture (SP) as

Ĥ 2 �
X

j�L,R,T

ωc â
†
j âj �ωAσ̂z � gâ†T σ̂− � Jâ†T �âL � âR�� h:c:,

(B1)

where ωc is the fundamental frequency of these three identical
cavities, ωA is the energy-level transition frequency between the
ground state jms � 0i and the excited state jEyi, and g and J
are, respectively, the coupling strength for the spin–cavity
interaction and the cavity–cavity interactions.

APPENDIX C: THE INTERACTIONS BETWEEN
THE MECHANICAL MODES AND CAVITY
MODES

In this scheme, the three cavity modes âj will also interact with
the three mechanical modes b̂j. By setting the same coupling
strength as g0 for simplicity and under the frame rotation with
frequency ωp, we can express this type interaction with the
Hamiltonian form,

Ĥ 3 �
X

j�L,R,T

f−g0â†j âj�b̂†j exp �iωpt� � h:c:�g, (C1)

with the identical dispersive coupling strength g0 between the
cavity modes and the corresponding mechanical modes.

APPENDIX D: THE EFFECTIVE HAMILTONIAN
DERIVATION FOR THIS WHOLE SYSTEM

Considering the Hamiltonian in Eq. (1), we can diagonalize
the mechanical part of Ĥ 1 by the unitary transformation
Û s�r� � exp�r�b̂2j − b̂†2j �∕2�, where the squeezing parameter
r is defined via the relation tanh 2r � Ωp∕Δm. In this squeezed
frame, we can obtain the total Hamiltonian with the new ex-
pression

Ĥ S
Total � Ĥ S

1 � Ĥ S
2 � Ĥ S

3 , (D1)

where

Ĥ S
1 �

X
j�L,R,T

ΔS
mb̂

S†
j b̂Sj � JSmb̂

S†
T �b̂SL � b̂SR� � h:c:,

Ĥ S
2 � Ĥ 2,

Ĥ S
3 �

X
j�L,R,T

�−gS0 â†j âj�b̂S†j � b̂Sj ��:

Here, the relevant coefficients are defined, respectively, as

α � Ωp∕Δm,

ΔS
m � Δm�1 − α2�1∕2,
4r � ln�1� α�∕�1 − α�,
gS0 � g0e

r cos ωpt,

JSm � Jme2r∕2: (D2)

The mechanical part of this Hamiltonian can also be dia-
gonalized by the canonical transformation

b̂ST � �b̂� − b̂−�∕
ffiffiffi
2

p
,

b̂SL � �b̂� � b̂− �
ffiffiffi
2

p
b̂0�∕2,

b̂SR � �b̂� � b̂− −
ffiffiffi
2

p
b̂0�∕2, (D3)

where the modes b̂	;0 are the mechanical supermodes of the
resonators. Then, we define the dimensionless position
operators of these mechanical supermodes x̂0 � b̂†0 � b̂0 and
x̂	 � b̂†	 � b̂	. In addition to the constraint condition
jΔS

m 	 ffiffiffi
2

p
JSmj ≫ jωA − ωc j, we can discard modes b̂	 and

only focus on the single mode b̂0 in this system. Then, the
Hamiltonian �Ĥ S

1 � Ĥ S
3� can be simplified as

Ĥ S
1 � Ĥ S

3 ≃ ΔS
mb̂

†
0b̂0 �

gS0ffiffiffi
2

p x̂0�â†RâR − â†LâL�: (D4)

Applying a unitary transformation with the definition Û �
exp�−iωc�â†LâL � â†T âT � â†RâR � σ̂z�t � to the Hamiltonian
Ĥ S

Total, we can obtain

Ĥ S
Total � Δσ̂z � ΔS

mb̂
†
0b̂0 � Θ̂�â†RâR − â†LâL� � gâ†T σ̂−

� Jâ†T �âL � âR� � h:c:, (D5)

where Δ � ωA − ωc and Θ̂ � g0s x̂0∕
ffiffiffi
2

p
.

Then, we can also diagonalize the cavity-mode part in
the Hamiltonian Ĥ S

Total by introducing another canonical
transformation

â0 � −r1âL � r2âT � r1âR ,

â� � r3âL − r1âT � r4âR ,

â− � r4âL � r1âT � r3âR , (D6)

where r1 � J∕E , r2 � Θ̂∕E , r3�Θ̂, J� � r4�−Θ̂, J�, and
E �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J2 � Θ̂2

p
. Then, the Hamiltonian Ĥ S

Total can also
be further simplified as

Ĥ S
Total � Δσ̂z � ΔS

mb̂
†
0b̂0 � E�â†�â� − â†−â−� � gr2â

†
0σ̂−

� gr1�â†� − â†−�σ̂− � h:c:: (D7)

When the spectral separation between the supermodes is
much larger than the mechanical frequency (E ≫ ΔS

m), we
can neglect the effect of the terms of supermodes â	 and
get the effective Hamiltonian by using the approximate relation
r2 � Θ̂∕E ≈ g0s x̂0∕2J so

Ĥ eff ≈ Δσ̂z � ΔS
mb̂

†
0b̂0 �

ggS0
2J

�b̂0 � b̂†0��â†0σ̂− � h:c:�: (D8)
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