• Acta Optica Sinica
  • Vol. 41, Issue 1, 0116001 (2021)
Fei Wang1、3, Yuefeng Peng2、3, Dingyuan Tang2, and Deyuan Shen1、3、*
Author Affiliations
  • 1Jiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
  • 2Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
  • 3Jiangsu Institute of Mid Infrared Laser Applied Technology, Xuzhou, Jiangsu 221000, China
  • show less
    DOI: 10.3788/AOS202141.0116001 Cite this Article Set citation alerts
    Fei Wang, Yuefeng Peng, Dingyuan Tang, Deyuan Shen. Research Progress on Lasers Based on Transparent Ceramic Materials[J]. Acta Optica Sinica, 2021, 41(1): 0116001 Copy Citation Text show less
    References

    [1] Maiman T. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Coble R L. Sintering alumina: effect of atmospheres[J]. Journal of the American Ceramic Society, 45, 123-127(1962). http://www.onacademic.com/detail/journal_1000034562104510_7edc.html

    [3] Hatch S E, Parsons W F, Weagley R J. Hot-pressed polycrystalline CaF2∶Dy 2+ laser[J]. Applied Physics Letters, 5, 153-154(1964). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4855844

    [4] Yamamoto R M, Bhachu B S, Cutter K P et al. The use of large transparent ceramics in a high powered, diode pumped solid state laser. [C]//Advanced Solid-State Photonics, January 27-30, 2008, Nara, Japan. Washington, D.C.: OSA, WC5(2008).

    [6] Mandl A, Klimek D E. Textron's J-HPSSL 100 kW ThinZag© laser program. [C]//Conference on Lasers and Electro-Optics 2010, May 16-21,2010, San Jose, California. Washington, D.C.: OSA, JThH2(2010).

    [7] Greskovich C, Chernoch J P. Polycrystalline ceramic lasers[J]. Journal of Applied Physics, 44, 4599-4606(1973).

    [8] Ikesue A, Kinoshita T, Kamata K et al. Fabrication and optical properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers[J]. Journal of the American Ceramic Society, 78, 1033-1040(1995). http://dx.doi.org/10.1111/j.1151-2916.1995.tb08433.x

    [9] Lu J R, Ueda K I, Yagi H et al. Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics: a new generation of solid state laser and optical materials[J]. Journal of Alloys and Compounds, 341, 220-225(2002).

    [10] Latham W P, Lobad A, Newell T C et al. 6.5 kW, Yb∶YAG ceramic thin disk laser[J]. AIP Conference Proceedings, 1278, 758-764(2010). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3507169

    [11] Ikesue A, Aung Y L, Taira T et al. Progress in ceramic lasers[J]. Annual Review of Materials Research, 36, 397-429(2006).

    [12] Tokurakawa M, Shirakawa A, Ueda K et al. Diode-pumped ultrashort-pulse generation based on Yb 3+∶Sc2O3 and Yb 3+∶Y2O3 ceramic multi-gain-media oscillator[J]. Optics Express, 17, 3353-3361(2009).

    [13] Lim H H, Taira T. High peak power Nd∶YAG/Cr∶YAG ceramic microchip laser with unstable resonator[J]. Optics Express, 27, 31307-31315(2019). http://www.ncbi.nlm.nih.gov/pubmed/31684365

    [14] Mason P. Divok M, Ertel K, et al. Kilowatt average power 100 J-level diode pumped solid state laser[J]. Optica, 4, 438(2017).

    [15] Albach D, Chanteloup J C. Large size crystalline vs co-sintered ceramic Yb 3+∶YAG disk performance in diode pumped amplifiers[J]. Optics Express, 23, 570(2015).

    [16] Gaumé R, Viana B, Vivien D et al. A simple model for the prediction of thermal conductivity in pure and doped insulating crystals[J]. Applied Physics Letters, 83, 1355-1357(2003). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4871818

    [17] Fornasiero L, Mix E, Peters V et al. New oxide crystals for solid state lasers[J]. Crystal Research and Technology, 34, 255-260(1999).

    [18] Wang J, Zhao Y G, Yin D L et al. Holmium doped yttria transparent ceramics for 2-μm solid state lasers[J]. Journal of the European Ceramic Society, 38, 1986-1989(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=6ab98ccad37392bb3851d0885b366e08

    [19] Tokurakawa M, Takaichi K, Shirakawa A et al. Diode-pumped mode-locked Yb 3+∶Lu2O3ceramic laser[J]. Optics Express, 14, 12832(2006).

    [20] Tokurakawa M, Shirakawa A, Ueda K et al. Diode-pumped sub-100 fs Kerr-lens mode-locked Yb 3+∶Sc2O3 ceramic laser[J]. Optics Letters, 32, 3382-3384(2007). http://www.ncbi.nlm.nih.gov/pubmed/18059940

    [21] Kitajima S, Shirakawa A, Yagi H et al. Sub-100 fs pulse generation from a Kerr-lens mode-locked Yb∶Lu2O3 ceramic thin-disk laser[J]. Optics Letters, 43, 5451(2018). http://www.ncbi.nlm.nih.gov/pubmed/30383029

    [22] Wang Y C, Jing W, Loiko P et al. Sub-10 optical-cycle passively mode-locked Tm∶(L u2/3S c1/3)2O3 ceramic laser at 2 μm[J]. Optics Express, 26, 10299(2018).

    [23] Sanghera J, Frantz J, Kim W et al. 10% Yb 3+-Lu2O3 ceramic laser with 74% efficiency[J]. Optics Letters, 36, 576(2011).

    [24] Kitajima S, Nakao H, Shirakawa A et al. CW performance and temperature observation of Yb∶Lu2O3 ceramic thin-disk laser. [C]// Advanced Solid State Lasers 2017, October 1-5,2017,Nagoya, Aichi, Japan. Washington, D.C.: OSA, JM5A, 32(2017).

    [25] Wang H, Huang H T, Liu P et al. Diode-pumped continuous-wave and Q-switched Tm∶Y2O3 ceramic laser around 2050 nm[J]. Optical Materials Express, 7, 296(2017).

    [26] Wang F, Tang J W, Li E H et al. Ho 3+∶Y2O3 ceramic laser generated over 113 W of output power at 2117 nm[J]. Optics Letters, 44, 5933(2019). http://www.researchgate.net/publication/337769847_Ho_3_Y_2_O_3_ceramic_laser_generated_over_113_W_of_output_power_at_2117_nm

    [27] Li E H, Tang J W, Shen Y J et al. High peak power acousto-optically Q-switched Ho∶Y2O3 ceramic laser at 2117 nm[J]. IEEE Photonics Technology Letters, 32, 492-495(2020).

    [28] Sanamyan T, Simmons J, Dubinskii M. Er 3+-doped Y2O3 ceramic laser at ~2.7 μm with direct diode pumping of the upper laser level[J]. Laser Physics Letters, 7, 206-209(2010).

    [29] Sanamyan T, Kanskar M, Xiao Y et al. High power diode-pumped 27-μm Er 3+∶Y2O3 laser with nearly quantum defect-limited efficiency[J]. Optics Express, 19, A1082(2011). http://www.ncbi.nlm.nih.gov/pubmed/21935250

    [30] Uehara H, Tokita S, Kawanaka J et al. Optimization of laser emission at 2.8 μm by Er∶Lu2O3 ceramics[J]. Optics Express, 26, 3497(2018).

    [31] Uehara H, Tokita S, Kawanaka J et al. A passively Q-switched compact Er∶Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber[J]. Applied Physics Express, 12, 022002(2019).

    [32] Guan X F, Wang J W, Zhang Y Z et al. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er∶Y2O3 ceramic lasers[J]. Photonics Research, 6, 830(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180831000001TpVsYv

    [33] Qin Z P, Xie G Q, Zhang J et al. Continuous-wave and passively Q-switched Er∶Y2O3 ceramic laser at 2.7 μm[J]. International Journal of Optics, 3153614(2018).

    [34] Ren X J, Wang Y, Fan X L et al. High-peak-power acousto-optically Q-switched Er∶Y2O3 ceramic laser at ~2.7 μm[J]. IEEE Photonics Journal, 9, 1-6(2017).

    [35] Wang L, Huang H, Shen D et al. Room temperature continuous-wave laser performance of LD pumped Er∶Lu2O3 and Er∶Y2O3 ceramic at 2.7 μm[J]. Optics Express, 22, 19495-19503(2014). http://europepmc.org/abstract/med/25321032

    [36] Li E H. Research on sesquioxide-based ceramic lasers at mid-infrared band[D]. Shanghai: Fudan University, 55-58(2020).

    [37] Ikesue A, Aung Y L. Synthesis and performance of advanced ceramic lasers[J]. Journal of the American Ceramic Society, 89, 1936-1944(2006).

    [38] Ikesue A, Aung Y L. Ceramic laser materials[J]. Nature Photonics, 2, 721-727(2008).

    [39] Sanghera J, Kim W, Villalobos G et al. Ceramic laser material: past and present[J]. Optical Materials, 35, 693-699(2013). http://www.ingentaconnect.com/content/el/09253467/2013/00000035/00000004/art00002

    [40] Li M, Hu H, Gao Q S et al. A 7.08-kW YAG/Nd∶YAG/YAG composite ceramic slab laser with dual concentration doping[J]. IEEE Photonics Journal, 9, 1-10(2017). http://ieeexplore.ieee.org/document/7941994/

    Fei Wang, Yuefeng Peng, Dingyuan Tang, Deyuan Shen. Research Progress on Lasers Based on Transparent Ceramic Materials[J]. Acta Optica Sinica, 2021, 41(1): 0116001
    Download Citation