• Opto-Electronic Engineering
  • Vol. 47, Issue 8, 190068 (2020)
Xiao Shilei* and Li Bincheng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190068 Cite this Article
    Xiao Shilei, Li Bincheng. Residual stress measurement methods of optics[J]. Opto-Electronic Engineering, 2020, 47(8): 190068 Copy Citation Text show less
    References

    [1] Withers P J, Bhadeshia H K D H. Residual stress. Part 1–measurement techniques[J]. Materials science and Technol-ogy, 2001, 17(4): 355–365.

    [2] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Non-destructive testing—Practice for residual stress measurement by X-ray: GB 7704–2017[S]. Beijing: China Standard Press, 2017.

    [3] Xie J, Cheng J S, Lu P, et al. Analysis on errors of measuring residual stress in glass-ceramic with X-ray diffraction[J]. Journal of Wuhan University of Technology, 2007, 29(2): 23–25.

    [4] Labat S, Gergaud P, Thomas O, et al. Interdependence of elastic strain and segregation in metallic multilayers: An X-Ray diffrac-tion study of (111) Au/Ni multilayers[J]. Journal of Applied Phys-ics, 2000, 87(3): 1172–1181.

    [5] Taylor L N, Brown A K, Pung A J, et al. Continuous-wave laser damage of uniform and nanolaminate hafnia and titania optical coatings[J]. Optics Letters, 2013, 38(21): 4292–4295.

    [6] Klaus M, Genzel C, Holzschuh H. Residual stress depth profiling in complex hard coating systems by X-ray diffraction[J]. Thin Solid Films, 2008, 517(3): 1172–1176.

    [7] Prevéy P S. Current applications of X-ray diffraction residual stress measurement[C]//Developments in Materials Characteri-zation Technologies, Materials Park, OH, 1996: 103–110.

    [8] Kandil F A, Lord J D, Fry A T, et al. A review of residual stress measurement methods a guide to technique selection[R]. United Kingdom: National Physical Lab., Teddington, 2001.

    [9] Yu K, Sun Y F, Chen X J. Residual stress measurement with X-ray diffraction[J]. Journal of Rocket Propulsion, 2015, 41(2): 102–107.

    [10] Luo Q, Jones A H. High-precision determination of residual stress of polycrystalline coatings using optimised XRD-sin2ψ technique[J]. Surface and Coatings Technology, 2010, 205(5): 1403–1408.

    [11] Pureza J M, Lacerda M M, De Oliveira A L, et al. Enhancing accuracy to Stoney equation[J]. Applied Surface Science, 2009, 255(12): 6426–6428.

    [12] Janssen G C A M, Abdalla M M, Van Keulen F, et al. Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers[J]. Thin Solid Films, 2009, 517(6): 1858–1867.

    [13] Richter F, Kupfer H, Schlott P, et al. Optical properties and me-chanical stress in SiO2/Nb2O5 multilayers[J]. Thin Solid Films, 2001, 389(1–2): 278–283.

    [14] Wang X Z. Range analysis of thermal stress and displacement of GaN films on Al2O3 substrate[J]. Laser & Optoelectronics Progress, 2015, 52(4): 041602.

    [15] Rats D, Poitras D, Soro J M, et al. Mechanical properties of plasma-deposited silicon-based inhomogeneous optical coat-ings[J]. Surface and Coatings Technology, 1999, 111(2–3): 220–228.

    [16] Lee Y Y, McNallan M J. Ignition of nickel in environments con-taining oxygen and chlorine[J]. Metallurgical Transactions A, 1991, 18(6): 1099–1107.

    [17] Fluri A, Pergolesi D, Roddatis V, et al. In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction[J]. Nature Communications, 2016, 7(1): 10692.

    [18] Shao S Y, Fan Z X, Fan R Y, et al. A review of study of stress in thin films[J]. Laser & Optoelectronics Progress, 2005, 42(1): 22–27.

    [19] Klein C A. How accurate are Stoney’s equation and recent mod-ifications[J]. Journal of Applied Physics, 2000, 88(9): 5487–5489.

    [20] Timoshenko S. Analysis of bi-metal thermostats[J]. Journal of the Optical Society of America, 1925, 11(3): 233–255.

    [21] Rich T A. Thermo-mechanics of biometal[J]. General Electric Revenue, 1934, 37(2): 102–105.

    [22] Sch.fer J D, N.fe H, Aldinger F. Macro- and microstress analy-sis in sol-gel derived Pb (ZrxTi1-x) O3 thin films[J]. Journal of Ap-plied Physics, 1999, 85(12): 8023.

    [23] Brenner A, Senderoff S. Calculation of stress in electrodeposits from the curvature of a plated strip[J]. Journal of research of the National Bureau of Standards, 1949, 42: 105–123.

    [24] Zhang Y, Wang W H, Greer A L. Making metallic glasses plastic by control of residual stress[J]. Nature Materials, 2006, 5(11): 857–860.

    [25] Freund L B, Suresh S. Thin Film Materials: Stress, Defect For-mation and Surface Evolution[M]. Cambridge: Cambridge Uni-versity Press, 2004.

    [26] Liu P L. The stress evolution of layered Si electrode during lithiation and delithiation: modified Stoney formula and finite element simulation[D]. Hefei: University of Science and Tech-nology of China, 2017.

    [27] Nakashima S, Mitani T, Ninomiya M, et al. Raman investigation of strain in Si/SiGe heterostructures: Precise determination of the strain-shift coefficient of Si bands[J]. Journal of Applied Physics, 2006, 99(5): 053512.

    [28] Li Z P, Zhang F H, Zhang Y, et al. Experimental investigation on the surface and subsurface damages characteristics and forma-tion mechanisms in ultra-precision grinding of SiC[J]. The Inter-national Journal of Advanced Manufacturing Technology, 2017, 92(5–8): 2677–2688.

    [29] Groth B P, Langan S M, Haber R A, et al. Relating residual stresses to machining and finishing in silicon carbide[J]. Ce-ramics International, 2016, 42(1): 799–807.

    [30] Serbena F C, Zanotto E D. Internal residual stresses in glass-ceramics: A review[J]. Journal of Non-Crystalline Solids, 2012, 358(6–7): 975–984.

    [31] Huser T, Hollars C W, Siekhaus W J, et al. Characterization of proton exchange layer profiles in KD2PO4 crystals by mi-cro-Raman spectroscopy[J]. Applied Spectroscopy, 2004, 58(3): 349–351.

    [32] Safaie P, Eshaghi A, Bakhshi S R. Optical properties of oxygen doped diamond-like carbon thin films[J]. Journal of Alloys and Compounds, 2016, 672: 426–432.

    [33] Zhao ZW, Xue F, Mao Y J Z, et al. Effects of annealing on the residual stresses distribution and the structural properties of Si core fiber[J]. Optical Fiber Technology, 2018, 41: 193–199.

    [34] Cen H, Wang K Y. Residual stress analysis of uncooled infrared focal plane arrays by micro-raman spectroscopy[J]. Journal of Mechanical Strength, 2015, 37(1): 68–73.

    [36] Qiu Y, Lei Z K, Kang Y L, et al. Micro-raman spectroscopy and its applications to measure residual stress in micro-structure[J]. Journal of Mechanical Strength, 2004, 26(4): 389–392.

    [37] Theocaris P S, Gdoutos E E. Matrix Theory of Photoelasticity[M]. Berlin: Springer, 2013.

    [38] De Senarmont H. Sur les modifications que la réflexion spécu-laire à la surface des corps métalliques imprime à un rayon de lumière polarisée[J]. Ann. Chim. Phys, 1840, 73: 337–362.

    [39] Ramesh K, Ramakrishnan V. Digital photoelasticity of glass: A comprehensive review[J]. Optics and Lasers in Engineering, 2016, 87: 59–74.

    [40] Lei Z K, Yun D Z, Kang Y L, et al. A review of digital photoelas-ticity[J]. Journal of Experimental Mechanics, 2004, 19(4): 393–402.

    [42] Vivek R, Ramesh K. Residual stress analysis of commercial float glass using digital photoelasticity[J]. International Journal of Ap-plied Glass Science, 2015, 6(4): 419–427.

    [43] Jagailloux F, Valle V, Dupré J C, et al. Applied photoelasticity for residual stress measurement inside crystal silicon wafers for solar applications[J]. Strain, 2016, 52(4): 355–368.

    [44] Tao B, Yuan Y, Zhou X L, et al. An integrated solution for com-pression-molded glass lenses[J]. Proceedings of SPIE, 2016, 10021: 100210H.

    [45] Wang R P. The image photo-carrier theory and its application to the determination of principal stress direction[J]. Proceedings of SPIE, 1987, 814: 257–262.

    [46] Ramesh K, Deshmukh S S. Three fringe photoelasticity-use of colour image processing hardware to automate ordering of isochromatics[J]. Strain, 1996, 32(3): 79–86.

    [47] Hillar A, Ainola L, Anton J. Half-fringe phase-stepping with se-paration of the principal stress directions[J]. Proceedings of the Estonian Academy of Sciences, Engineering, 1999, 5(3): 198–211.

    [48] Briz J C, Martínez A R, Branch J W. Computational hybrid phase shifting technique applied to digital photoelasticity[J]. Op-tik, 2018, 157: 287–297.

    [49] Shang W. Experimental research of several mechanics prob-lems for toughened PMMA by directional stretching process[D]. Tianjin: Tianjin University, 2011.

    [50] Sung P C, Wang W C, Hwang C H, et al. A low-level stress measurement method by integrating white light photoelasticity and spectrometry[J]. Optics & Laser Technology, 2018, 98: 33–45.

    [51] Guo E H, Liu Y G, Han Y S, et al. Full-field stress determination in photoelasticity with phase shifting technique[J]. Measurement Science and Technology, 2018, 29(4): 045208.

    [52] Wang Z B, Li K W, Zhang R, et al. Fabrication of piezoelectric actuator for photoelastic modulator based on lithium niobate[J]. Optics and Precision Engineering, 2015, 23(1): 63–69.

    [53] Wang B L, Oakberg T C. A new instrument for measuring both the magnitude and angle of low level linear birefringence[J]. Re-view of Scientific Instruments, 1999, 70(10): 3847–3854.

    [54] Wang B L, Leadbetter A, Freudenthal J, et al. Measuring stress birefringence in small Si samples[J]. Energy Procedia, 2014, 55: 608–617.

    [55] Sun L, Edlou S. Low-birefringence lens design for polarization sensitive optical systems[J]. Proceedings of SPIE, 2006, 6289: 62890H.

    [56] Van der Sneppen L, Wiskerke A, Ariese F, et al. Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity[J]. Analytica Chimica Acta, 2006, 558(1–2): 2–6.

    [57] Meekhof D M, Vetter P, Majumder P K, et al. High-precision measurement of parity nonconserving optical rotation in atomic lead[J]. Physical Review Letters, 1993, 71(21): 3442–3445.

    [58] Abramovici A, Althouse W E, Drever R W P, et al. LIGO: The laser interferometer gravitational-wave observatory[J]. Science, 1992, 256(5055): 325–333.

    [59] Vallet M, Bretenaker F, Le Floch A, et al. The malus fabry–perot interferometer[J]. Optics communications, 1999, 168(5–6): 423–443.

    [60] Lee J Y, Lee H W, Kim JW, et al. Measurement of ultralow supermirror birefringence by use of the polarimetric differential cavity ringdown technique[J]. Applied Optics, 2000, 39(12): 1941–1945.

    [61] Xiao S L, Li B C, Cui H, et al. Sensitive measurement of stress birefringence of fused silica substrates with cavity ring-down technique[J]. Optics Letters, 2018, 43(4): 843–846.

    [62] Noyan I C, Huang T C, York B R. Residual stress/strain analysis in thin films by X-ray diffraction[J]. Critical Reviews in Solid State and Materials Sciences, 1995, 20(2): 125–177.

    [63] Hearne S, Chason E, Han J, et al. Stress evolution during me-talorganic chemical vapor deposition of GaN[J]. Applied Physics Letters, 1999, 74(3): 356–358.

    [64] Ferreira N G, Abramof E, Leite N F, et al. Analysis of residual stress in diamond films by x-ray diffraction and micro-Raman spectroscopy[J]. Journal of Applied Physics, 2002, 91(4): 2466–2472.

    CLP Journals

    [1] Wu Meiyu, Wang Jing, Li Bincheng. Polarized cavity ring-down technique for characterization of single-layer SiO2 films[J]. Opto-Electronic Engineering, 2021, 48(11): 210270

    Xiao Shilei, Li Bincheng. Residual stress measurement methods of optics[J]. Opto-Electronic Engineering, 2020, 47(8): 190068
    Download Citation