• Photonics Research
  • Vol. 2, Issue 4, B11 (2014)
Ning Zhang1、2, Xinlun Cai2, and and Siyuan Yu1、2、*
Author Affiliations
  • 1Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB, UK
  • 2State Key Laboratory of Optoelectronic Materials and Technology, School of Physical Science and Engineering Technologies, Sun Yat-sen University, Guangzhou 510 275, China
  • show less
    DOI: 10.1364/PRJ.2.000B11 Cite this Article Set citation alerts
    Ning Zhang, Xinlun Cai, and Siyuan Yu. Optical generation of tunable and narrow linewidth radio frequency signal based on mutual locking between integrated semiconductor lasers[J]. Photonics Research, 2014, 2(4): B11 Copy Citation Text show less
    References

    [1] J. Yao. Microwave photonics. J. Lightwave Technol., 27, 314-335(2009).

    [2] G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, D. W. Prather. Radiofrequency signal-generation system with over seven octaves of continuous tuning. Nat. Photonics, 7, 118-122(2013).

    [3] A. J. Seeds, K. J. Williams. Microwave photonics. J. Lightwave Technol., 24, 4628-4641(2006).

    [4] P. Shen, N. J. Gomes, P. A. Davies, P. G. Huggard, B. N. Ellison. Analysis and demonstration of a fast tunable fiber-ring-based optical frequency comb generator. J. Lightwave Technol., 25, 3257-3264(2007).

    [5] Y. Juan, F. Lin. Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser. IEEE Photon. J., 3, 644-650(2011).

    [6] X. S. Yao, L. Maleki. Optoelectronic oscillator for photonic systems. IEEE J. Quantum Electron., 32, 1141-1149(1996).

    [7] M. Soldo, N. Gibbons, G. Giuliani. Narrow linewidth mm-wave signal generation based on two phase-locked DFB lasers mutually coupled via four wave mixing. Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, JThE32(2009).

    [8] U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, B. Broberg. A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers. IEEE Photon. Technol. Lett., 4, 936-938(1992).

    [9] L. A. Johansson, A. J. Seeds. Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop. IEEE Photon. Technol. Lett., 12, 690-692(2000).

    [10] M. Sorel, G. Giuliani, A. Scire, R. Miglierina, S. Donati, P. J. R. Laybourn. Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model. IEEE J. Quantum Electron., 39, 1187-1195(2003).

    [11] H. Li, D. Lu, Z. Kang, X. Cai, N. Zhang, S. Yu. A numerical study of cavity enhanced inter-modal four wave mixing in injection-locked semiconductor ring lasers. IEEE J. Quantum Electron., 49, 862-869(2013).

    [12] C. Born, M. Sorel, S. Yu. Linear and nonlinear mode interactions in a semiconductor ring laser. IEEE J. Quantum Electron., 41, 261-271(2005).

    [13] M. Ahmed, M. Yamada. Field fluctuations and spectral line shape in semiconductor lasers subjected to optical feedback. J. Appl. Phys., 95, 7573-7583(2004).

    [14] X. Cai, Y.-L. D. Ho, G. Mezosi, Z. Wang, M. Sorel, S. Yu. Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers. IEEE J. Quantum Electron., 48, 406-418(2012).

    [15] R. J. C. Spreeuw, R. C. Neelen, N. J. van Druten, E. R. Eliel, J. P. Woerdman. Mode coupling in a He-Ne ring laser with backscattering. Phys. Rev. A, 42, 4315-4324(1990).

    [16] Y. D. Chong, A. D. Stone. General linewidth formula for steady-state multimode lasing in arbitrary cavities. Phys. Rev. Lett., 109, 063902(2012).

    [17] R. Lang. Injection locking properties of a semiconductor laser. IEEE J. Quantum Electron., 18, 976-983(1982).

    [18] O. Lidoyne, P. Gallion, C. Chabran, G. Debarge. Locking range, phase noise and power spectrum of an injection-locked semiconductor laser. IEEE Proc. J. Optoelectron., 137, 147-154(1990).

    [19] G. Agrawal. Line narrowing in a single-mode injection laser due to external optical feedback. IEEE J. Quantum Electron., 20, 468-471(1984).

    [20] A. Takada, W. Imajuku. Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking. IEEE Photon. Technol. Lett., 9, 1328-1330(1997).

    [21] C. Born. Nonlinear mode interactions in semiconductor ring lasers(2006).

    [22] C. Born, G. Yuan, Z. Wang, S. Yu. Nonlinear gain in semiconductor ring lasers. IEEE J. Quantum Electron., 44, 1055-1064(2008).

    [23] M. Ahmed, M. Yamada, M. Saito. Numerical modeling of intensity and phase noise in semiconductor lasers. IEEE J. Quantum Electron., 37, 1600-1610(2001).

    [24] P. Laurent, A. Clairon, C. Breant. Frequency noise analysis of optically self-locked diode lasers. IEEE J. Quantum Electron., 25, 1131-1142(1989).

    [25] M. Sorel, P. J. R. Laybourn, A. Scire, S. Balle, G. Giuliani, R. Miglierina, S. Donati. Alternate oscillations in semiconductor ring lasers. Opt. Lett., 27, 1992-1994(2002).

    CLP Journals

    [1] Ling-Xiu Zou, Yong-Zhen Huang, Xiao-Meng Lv, Bo-Wen Liu, Heng Long, Yue-De Yang, Jin-Long Xiao, and Yun Du. Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing[J]. Photonics Research, 2014, 2(6): 177

    [2] Xiu Liu, Lijuan Wang, Xuan Fang, Taojie Zhou, Guohong Xiang, Boyuan Xiang, Xueqing Chen, Suikong Hark, Hao Liang, Shumin Wang, Zhaoyu Zhang. Continuous wave operation of GaAsBi microdisk lasers at room temperature with large wavelengths ranging from 1.27 to 1.41  μm[J]. Photonics Research, 2019, 7(5): 508

    Ning Zhang, Xinlun Cai, and Siyuan Yu. Optical generation of tunable and narrow linewidth radio frequency signal based on mutual locking between integrated semiconductor lasers[J]. Photonics Research, 2014, 2(4): B11
    Download Citation