• Photonics Research
  • Vol. 8, Issue 12, B47 (2020)
Weijie Wu1、2, Shizhen Chen1, Wenhao Xu1, Zhenxing Liu3, Runnan Lou2, Lihua Shen2, Hailu Luo1、4、*, Shuangchun Wen1, and Xiaobo Yin2、3、5、*
Author Affiliations
  • 1Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
  • 2Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
  • 3Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA
  • 4e-mail: hailuluo@hnu.edu.cn
  • 5e-mail: xiaobo.yin@colorado.edu
  • show less
    DOI: 10.1364/PRJ.401531 Cite this Article Set citation alerts
    Weijie Wu, Shizhen Chen, Wenhao Xu, Zhenxing Liu, Runnan Lou, Lihua Shen, Hailu Luo, Shuangchun Wen, Xiaobo Yin. Weak-value amplification for the optical signature of topological phase transitions[J]. Photonics Research, 2020, 8(12): B47 Copy Citation Text show less
    References

    [1] M. Z. Hasan, C. L. Kane. Colloquium: topological insulators. Rev. Mod. Phys., 82, 3045-3067(2010).

    [2] H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon. Topological transitions in metamaterials. Science, 336, 205-209(2012).

    [3] W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, S. Zhang. Topological photonic phase in chiral hyperbolic metamaterials. Phys. Rev. Lett., 114, 037402(2015).

    [4] B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, S. Zhang. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science, 359, 1013-1016(2018).

    [5] W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop, F. Ye. Coupling of edge states and topological Bragg solitons. Phys. Rev. Lett., 123, 254103(2019).

    [6] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [7] L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. G. Yao, K. H. Wu. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett., 109, 056804(2012).

    [8] M. Ezawa. Spin-valley optical selection rule and strong circular dichroism in silicene. Phys. Rev. B, 86, 161407(2012).

    [9] C. L. Kane, E. J. Mele. Quantum spin Hall effect in graphene. Phys. Rev. Lett., 95, 226801(2005).

    [10] C. L. Kane, E. J. Mele. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett., 95, 146802(2005).

    [11] N. D. Drummond, V. Zólyomi, V. I. Fal’ko. Electrically tunable band gap in silicene. Phys. Rev. B, 85, 075423(2012).

    [12] M. Ezawa. Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett., 109, 055502(2012).

    [13] S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, M. Solja. Experimental observation of large Chern numbers in photonic crystals. Phys. Rev. Lett., 115, 253901(2015).

    [14] Y. Aharonov, D. Z. Albert, L. Vaidman. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 60, 1351-1354(1988).

    [15] X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, S. Wen. Recent advances in the spin Hall effect of light. Rep. Prog. Phys., 80, 066401(2017).

    [16] O. Hosten, P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science, 319, 787-790(2008).

    [17] G. Jayaswal, G. Mistura, M. Merano. Observation of the Imbert-Fedorov effect via weak value amplification. Opt. Lett., 39, 2266-2269(2014).

    [18] G. Jayaswal, G. Mistura, M. Merano. Observing angular deviations in ligh-beam reflection via weak measurements. Opt. Lett., 39, 6257-6260(2014).

    [19] W. J. M. Kort-Kamp, F. J. Culchac, R. B. Capaz, F. A. Pinheiro. Photonic spin Hall effect in bilayer graphene moiré superlattices. Phys. Rev. B, 98, 195431(2018).

    [20] S. Chen, X. Ling, W. Shu, H. Luo, S. Wen. Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect. Phys. Rev. Appl., 13, 014057(2020).

    [21] M. C. Chang, M. F. Yang. Optical signature of topological insulators. Phys. Rev. B, 80, 113304(2009).

    [22] O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, C. Dainty. Optical nanoprobing via spin-orbit interaction of light. Phys. Rev. Lett., 104, 253601(2010).

    [23] S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, S. Wen. Weak-value amplification for Weyl-point separation in momentum space. New J. Phys., 20, 103050(2018).

    [24] W. J. M. Kort-Kamp. Topological phase transitions in the photonic spin Hall effect. Phys. Rev. Lett., 119, 147401(2017).

    [25] N. Brunner, C. Simon. Measuring small longitudinal phase shifts: weak measurements or standard interferometry?. Phys. Rev. Lett., 105, 010405(2010).

    [26] X. Yin, Z. Ye, J. Rho, Y. Wang, X. Zhang. Photonic spin Hall effect at metasurfaces. Science, 339, 1405-1407(2013).

    [27] W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, S. Wen. Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals. Photon. Res., 6, 511-516(2018).

    [28] K. Y. Bliokh, Y. P. Bliokh. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys. Rev. Lett., 96, 073903(2006).

    [29] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin Hall effect of light. Science, 348, 1448-1451(2015).

    [30] H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, D. Fan. Spin Hall effect of a light beam in left-handed materials. Phys. Rev. A, 80, 043810(2009).

    [31] L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, S. Wen. Quantized photonic spin Hall effect in graphene. Phys. Rev. A, 95, 013809(2017).

    [32] W. J. M. Kort-Kamp, B. Amorim, G. Bastos, F. A. Pinheiro, F. S. S. Rosa, N. M. R. Peres, C. Farina. Active magneto-optical control of spontaneous emission in graphene. Phys. Rev. B, 92, 205415(2015).

    [33] W. J. M. Kort-Kamp, N. A. Sinitsyn, D. A. R. Dalvit. Quantized beam shifts in graphene. Phys. Rev. B, 93, 081410(2016).

    [34] W. Wu, W. Zhang, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen, X. Yin. Transitional Goos-Hänchen effect due to the topological phase transitions. Opt. Express, 26, 23705-23713(2018).

    [35] D. N. Sheng, Z. Y. Weng, L. Sheng, F. D. M. Haldane. Quantum spin-Hall effect and topologically invariant Chern numbers. Phys. Rev. Lett., 97, 036808(2006).

    [36] E. Prodan. Robustness of the spin-Chern number. Phys. Rev. B, 80, 125327(2009).

    [37] M. Ezawa. Photoinduced topological phase transition and a single dirac-cone state in silicene. Phys. Rev. Lett., 110, 026603(2013).

    [38] Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, X. C. Xie. Topological Imbert-Fedorov shift in Weyl semimetals. Phys. Rev. Lett., 115, 156602(2015).

    [39] S. A. Yang, H. Pan, F. Zhang. Chirality-dependent Hall effect in Weyl semimetals. Phys. Rev. Lett., 115, 156603(2015).

    [40] R. Kubo. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn., 12, 570-586(1957).

    [41] L. Stille, C. J. Tabert, E. J. Nicol. Optical signatures of the tunable band gap and valley-spin coupling in silicene. Phys. Rev. B, 86, 195405(2012).

    [42] P. Rodriguez-Lopez, W. J. M. Kort-Kamp, D. Dalvit, L. M. Woods. Casimir force phase transitions in the graphene family. Nat. Commun., 8, 14699(2017).

    [43] M. Liu, L. Cai, S. Chen, Y. Liu, H. Luo, S. Wen. Strong spin-orbit interaction of light on the surface of atomically thin crystals. Phys. Rev. A, 95, 063827(2017).

    [44] W. Wu, S. Chen, C. Mi, W. Zhang, H. Luo, S. Wen. Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime. Phys. Rev. A, 96, 043814(2017).

    [45] M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London Ser. A, 392, 45-57(1984).

    [46] K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, A. V. Zayats. Spin-orbit interactions of light. Nat. Photonics, 9, 796-808(2015).

    [47] L. Shiand, J. C. W. Song. Shift vector as the geometric origin of beam shifts. Phys. Rev. B, 100, 201405(2019).

    [48] I. M. Duck, P. M. Stevenson, E. C. G. Sudarshan. The sense in which a ‘weak measurement’ of a spin -1/2 particle’s spin component yields a value 100. Phys. Rev. D, 40, 2112-2117(1989).

    [49] N. W. M. Ritchie, J. G. Story, R. G. Hulet. Realization of a measurement of a ‘weak value’. Phys. Rev. Lett., 66, 1107-1110(1991).

    [50] J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, R. W. Boyd. Colloquium: understanding quantum weak values: basics and applications. Rev. Mod. Phys., 86, 307-316(2014).

    [51] A. N. Jordan, J. Martnez-Rincón, J. C. Howell. Technical advantages for weak-value amplification: when less is more. Phys. Rev. X, 4, 011031(2014).

    [52] H. Luo, X. Zhou, W. Shu, S. Wen, D. Fan. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection. Phys. Rev. A, 84, 043806(2011).

    [53] X. Zhou, X. Li, H. Luo, S. Wen. Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect. Appl. Phys. Lett., 104, 051130(2014).

    [54] C.-F. Li, X.-Y. Xu, J.-S. Tang, J.-S. Xu, G.-C. Guo. Ultrasensitive phase estimation with white light. Phys. Rev. A, 83, 044102(2011).

    [55] X.-Y. Xu, Y. Kedem, K. Sun, L. Vaidman, C.-F. Li, G.-C. Guo. Phase estimation with weak measurement using a white light source. Phys. Rev. Lett., 111, 033604(2013).

    [56] S. Chen, X. Zhou, C. Mi, H. Luo, S. Wen. Modified weak measurements for the detection of the photonic spin Hall effect. Phys. Rev. A, 91, 062105(2015).

    [57] P. N. Dyachenko, S. Molesky, A. Yu Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, M. Eich. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun., 7, 11809(2016).

    [58] C. Shang, X. Chen, W. Luo, F. Ye. Quantum anomalous Hall-quantum spin Hall effect in optical superlattices. Opt. Lett., 43, 275-278(2018).

    [59] H. Wang, B. Yang, W. Xu, Y. Fan, Q. Guo, Z. Zhu, C. T. Chan. Highly degenerate photonic flat bands arising from complete graph configurations. Phys. Rev. A, 100, 043841(2019).

    CLP Journals

    [1] Andrea Alù, Laura Pilozzi, Haitan Xu, Jingyun Fan. Topological photonics and beyond: introduction[J]. Photonics Research, 2021, 9(1): TPB1

    [2] Tianyu Zhang, Xiaoqiuyan Zhang, Zhuocheng Zhang, Xingxing Xu, Yueying Wang, Zhaoyun Duan, Yanyu Wei, Yubin Gong, Shenggang Liu, Min Hu, Tao Zhao. Tunable optical topological transition of Cherenkov radiation[J]. Photonics Research, 2022, 10(7): 1650

    Weijie Wu, Shizhen Chen, Wenhao Xu, Zhenxing Liu, Runnan Lou, Lihua Shen, Hailu Luo, Shuangchun Wen, Xiaobo Yin. Weak-value amplification for the optical signature of topological phase transitions[J]. Photonics Research, 2020, 8(12): B47
    Download Citation