• Opto-Electronic Advances
  • Vol. 2, Issue 1, 180017 (2019)
[in Chinese]1、2, [in Chinese]1, [in Chinese]1, [in Chinese]1, and [in Chinese]1
Author Affiliations
  • 1Laser Micro/Nano Processing Lab, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • 2Department of Experimental Teaching, Guangdong University of Technology, Guangzhou 510006, China
  • show less
    DOI: 10.29026/oea.2019.180017 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Laser machining of transparent brittle materials: from machining strategies to applications[J]. Opto-Electronic Advances, 2019, 2(1): 180017 Copy Citation Text show less
    References

    [1] K Matsumaru, A Takata, K Ishizaki. Advanced thin dicing blade for sapphire substrate. Sci Technol Adv Mater, 6, 120-122(2005).

    [2] R Rao, J E Bradby, J S Williams. Patterning of silicon by indentation and chemical etching. Appl Phys Lett, 91, 123113(2007).

    [3] E S Prakash, K Sadashivappa, V Joseph, M Singaperumal. Nonconventional cutting of plate glass using hot air jet: experimental studies. Mechatronics, 11, 595-615(2001).

    [4] F Yuan, J A Johnson, D D Allred, R H Todd. Waterjet cutting of cross-linked glass. J Vac Sci Technol A, 13, 136-139(1995).

    [5] W Clower, V Kaajakari, C G Wilson. Laser-assisted wet etching of quartz crystal resonators. J Microelectromechan Syst, 27, 22-24(2018).

    [6] M V Udrea, A Alacakir, A Esendemir, O Kusdemir, O Pervan et al. Small-power-pulsed and continuous longitudinal CO2 laser for material processing. Proc SPIE, 4068, 657-662(2000).

    [7] GaribottiDomenickJDicing of micro-semiconductors: US3112850. 1963Garibotti, Domenick J. Dicing of micro-semiconductors: US3112850. 1963.

         LiZ GDomenickJMulti-focal laser processing system: CN103111757A. 2013Li Z G. Multi-focal laser processing system: CN103111757A. 2013.

    [8] A Yadav, H Kbashi, S Kolpakov, N Gordon, K M Zhou et al. Stealth dicing of sapphire wafers with near infra-red femtosecond pulses. Appl Phys A, 123, 369(2017).

    [9] A Couairon, A Mysyrowicz. Femtosecond filamentation in transparent media. Phys Rep, 441, 47-189(2007).

    [10] D P Banks, K S Kaur, R W Eason. Etching and forward transfer of fused silica in solid-phase by femtosecond laser-induced solid etching (LISE). Appl Surf Sci, 255, 8343-8351(2009).

    [11] G Lin, D Z Tan, F F Luo, D P Chen, Q Z Zhao et al. Fabrication and photocatalytic property of α-Bi2O3 nanoparticles by femtosecond laser ablation in liquid. J Alloys Compd, 507, L43-L46(2010).

    [12] K Zimmer, R Böhme, B Rauschenbach. Laser etching of fused silica using an adsorbed toluene layer. Appl Phys A, 79, 1883-1885(2004).

    [13] F Dausinger, H Hugel, V I Konov. Micromachining with ultrashort laser pulses: from basic understanding to technical applications. Proc SPIE, 5147, 106-115(2003).

    [14] C Foehl, D Breitling, K Jasper, J Radtke, . Precision drilling of metals and ceramics with short- and ultrashort-pulsed solid state lasers. Proc SPIE, 4426, 104-107(2002).

    [15] Q Y Wang. Femtosecond Laser Applications in Advanced Technologies(2015).

    [16] B N Chichkov, C Momma, S Nolte, F Von Alvensleben, A Tünnermann. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A, 63, 109-115(1996).

    [17] F Ahmed, M S Lee, H Sekita, T Sumiyoshi, M Kamata. Display glass cutting by femtosecond laser induced single shot periodic void array. Appl Phys A, 93, 189-192(2008).

    [18] C H Tsai, C S Liou. Fracture mechanism of laser cutting with controlled fracture. J Manuf Sci Eng, 125, 519-528(2003).

    [19] K D Ye, C W An, M H Hong, Y F Lu. Wafer dicing by laser-induced thermal shock process. Proc SPIE, 4557, 442940(2001).

    [20] B Lan, M H Hong, K D Ye, Z B Wang, S X Cheng et al. Laser precision engineering of glass substrates. Jpn J Appl Phys43, 43, 7102-7106(2004).

    [21] K Yamamoto, N Hasaka, H Morita, E Ohmura. Thermal stress analysis on laser cross scribe of glass. J Laser Appl, 22, 937-943(2010).

    [22] X B Hu, Q Hao, Z R Guo, H P Zeng. Dicing of sapphire wafer with all-fiber picosecond laser. Chin J Lasers, 44, 0102016(2017).

    [23] H W Zhuang. Research on multifocal picosecond laser stealth dicing btittle materials(2017).

    [24] B Tan, K Venkatakrishnan. Dual-focus laser micro-machining. J Mod Opt, 52, 2603-2611(2005).

    [25] M V Udrea, A Alacakir, A Esendemir, O Kusdemir, O Pervan et al. Small-power-pulsed and continuous longitudinal CO2 laser for material processing. Proc SPIE, 4068, 657-662(2000).

    [26] XieH ZZhangY YYangHLiJYiX YMulti-focus femtosecond laser scribing method applied to separation of light emitting diode (LED) device: CN102886609A. 2013Xie H Z, Zhang Y Y, Yang H, Li J, Yi X Y et al. Multi-focus femtosecond laser scribing method applied to separation of light emitting diode (LED) device: CN102886609A. 2013.

    [27] AlbermannGMoellerSRohlederTLiJYiX YPlasma etching and stealth dicing laser process: US20160071770, 2016Albermann G, Moeller S, Rohleder T, et al. Plasma etching and stealth dicing laser process: US20160071770, 2016.

    [28] LopezJMishchikKChassagneBJavaux-LegerCHönningerCet alGlass cutting using ultrashort pulsed Bessel beams. In Proceedings of the International Congress on Applications of Lasers & Electro-Optics Conference (ResearchGate, 2015)et al. Glass cutting using ultrashort pulsed Bessel beams. In Proceedings of the International Congress on Applications of Lasers & Electro-Optics Conference (ResearchGate, 2015); https://www.researchgate.net/publication/284617626 https://www.researchgate.net/publication/284617626

    [29] AlexeevA MKryzhanovskiyV IKhaitO VJavaux-LegerCHönningerCet alMethod for cutting non-metallic materials and device for carrying out said method: EP1506946A2. 2005Alexeev A M, Kryzhanovskiy V I, Khait O V. Method for cutting non-metallic materials and device for carrying out said method: EP1506946A2. 2005.

    [30] BovatsekJAraiA YYoshinoFTransparent material processing with an ultrashort pulse laser: US8389891, 2013Bovatsek J, Arai A Y, Yoshino F. Transparent material processing with an ultrashort pulse laser: US8389891, 2013.

    [31] SeongC YKimH UKimN SKimB CComparison of laser glass cutting processes using ps and fs lasers. In International Congress on Applications of Laser & Electro-Optics Conference (ResearchGate, 2012)International Congress on Applications of Laser & Electro-Optics Conference (ResearchGate, 2012); https://www.researchgate.net/publication/292854138. https://www.researchgate.net/publication/292854138

    [32] L F Ji, , T Y Yan, W H Wang, T R Wang et al. Research progress of ultrafast laser industrial applications based on filamentation. Opto Electron Eng, 44, 851-861(2017).

    [33] L M Kovachev, D A Georgieva. The long range filament stability: balance between non-paraxial diffraction and third-order nonlinearity. Proc SPIE 8770, 8770, 87701G(2013).

    [34] J F Daigle, O Kosareva, N Panov, M Bégin, F Lessard et al. A simple method to significantly increase filaments' length and ionization density. Appl Phys B, 94, 249-257(2009).

    [35] A Braun, G Korn, X Liu, D Du, J Squier et al. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt Lett, 20, 73-75(1995).

    [36] A Brodeur, C Y Chien, F A Ilkov, S L Chin, O G Kosareva et al. Moving focus in the propagation of ultrashort laser pulses in air. Opt Lett, 22, 304-306(1997).

    [37] M Mlejnek, E M Wright, J V Moloney. Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt Lett, 23, 382-384(1998).

    [38] D Z Tan, K N Sharafudeen, Y Z Yue, J R Qiu. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Prog Mater Sci, 76, 154-228(2016).

    [39] Z M Song, Z G Zhang, T Nakajima. Transverse-mode dependence of femtosecond filamentation. Opt Express, 17, 12217-12229(2009).

    [40] F Courvoisier, J Zhang, M K Bhuyan, M Jacquot, J M Dudley. Applications of femtosecond Bessel beams to laser ablation. Appl Phys A, 112, 29-34(2013).

    [41] K Sugioka, K Obata, M H Hong, D J Wu, L L Wong et al. Hybrid laser processing for microfabrication of glass. Appl Phys A, 77, 251-257(2003).

    [42] K Sugioka, K Obata, K Midorikawa, M H Hong, D J Wu et al. Advanced materials processing based on interaction of laser beam and a medium. J Photochem Photobiol A, 158, 171-178(2003).

    [43] M H Hong, K Sugioka, Y F Lu, K Midorikawa, T C Chong. Laser microfabrication of transparent hard materials and signal diagnostics. Appl Surf Sci, 186, 556-561(2002).

    [44] X Z Lu, F Jiang, T P Lei, R Zhou, C T Zhang et al. Laser-induced-plasma-assisted ablation and metallization on C-plane single crystal sapphire (c-Al2O3). Micromachines, 8, 300(2017).

    [45] A Stone, M Sakakura, Y Shimotsuma, K Miura, K Hirao et al. Femtosecond laser-writing of 3D crystal architecture in glass: Growth dynamics and morphological control. Mater Des, 146, 228-238(2018).

    [46] C F Pan, K Y Chen, B Liu, L Ren, J R Wang et al. Fabrication of micro-texture channel on glass by laser-induced plasma-assisted ablation and chemical corrosion for microfluidic devices. J Mater Process Technol, 240, 314-323(2017).

    [47] H Gao, Y W Hu, Y Xuan, J Li, Y L Yang et al. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures. Science, 346, 1352-1356(2014).

    [48] C He, F R Liu, M Wang, J W Yuan, J M Chen. Laser induced backside wet and dry etching of solar glass by short pulse ytterbium fiber laser irradiation. J Laser Appl, 24, 022005(2012).

    [49] K S Zelenska, S E Zelensky, L V Poperenko, K Kanev, V Mizeikis et al. Thermal mechanisms of laser marking in transparent polymers with light-absorbing microparticles. Opt Laser Technol, 76, 96-100(2016).

    [50] W Jiang, X Z Xie, X Wei, W Hu, Q L Ren et al. High contrast patterning on glass substrates by 1064 nm pulsed laser irradiation. Opt Mater Express, 7, 1565-1574(2017).

    [51] R Böhme, D Hirsch, K Zimmer. Laser etching of transparent materials at a backside surface adsorbed layer. Appl Surf Sci, 252, 4763-4767(2006).

    [52] R Böhme, K Zimmer. The influence of the laser spot size and the pulse number on laser-induced backside wet etching. Appl Surf Sci, 247, 256-261(2005).

    [53] G Kopitkovas, T Lippert, J Venturini, C David, A Wokaun. Laser induced backside wet etching: mechanisms and fabrication of micro-optical elements. J Phys, 59, 526-532(2014).

    [54] C Vass, B Hopp, T Smausz, F Ignácz. Experiments and numerical calculations for the interpretation of the backside wet etching of fused silica. Thin Solid Films, 453-454, 121-126(2004).

    [55] K Zimmer. Analytical solution of the laser-induced temperature distribution across internal material interfaces. Int J Heat Mass Transfer, 52, 497-503(2009).

    [56] K Zimmer, M Ehrhardt, R Böhme. Simulation of laser-induced backside wet etching of fused silica with hydrocarbon liquids. J Appl Phys, 107, 034908(2010).

    [57] X Z Xie, X D Huang, W Jiang, X Wei, W Hu et al. Three dimensional material removal model of laser-induced backside wet etching of sapphire substrate with CuSO4 solutions. Opt Laser Technol, 89, 59-68(2017).

    [58] X D Huang. Numerical simulation and experimental investigation in laser-induced backside wet etching of sapphire(2015).

    [59] T Sato, R Kurosaki, A Narazaki, Y Kawaguchi, H Niino. Flexible 3D deep microstructures of silica glass by laser-induced backside wet etching. Appl Phys A, 101, 319-323(2010).

    [60] M Mitsuishi, N Sugita, I Kono, S Warisawa. Analysis of laser micromachining in silica glass with an absorbent slurry. CIRP Ann, 57, 217-222(2008).

    [61] Z Q Huang, M H Hong, T B M Do, Q Y Lin. Laser etching of glass substrates by 1064 nm laser irradiation. Appl Phys A, 93, 159-163(2008).

    [62] Y X Yang, Q X Wang, T S Keat. Dynamic features of a laser-induced cavitation bubble near a solid boundary. Ultrason Sonochem, 20, 1098-1103(2013).

    [63] Y H, I L Chen. Dynamics of impacting a bubble by another pulsed-laser-induced bubble: jetting, fragmentation, and entanglement. Phys Rev E, 77, 026304(2008).

    [64] M F Hu. Study on laser induced cavitation bubbles and flow field distribution during laser-induced backside wet etching sapphire substrates(2014).

    [65] X Z Xie, X R Yuan, W F Chen, X Wei, W Hu et al. New development and applications of laser-induced cavitation bubbles. Laser Optoelectron Prog, 50, 080017(2013).

    [66] X Z Xie, M F Hu, W F Chen, X Wei, W Hu et al. Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation. J Laser Micro Nanoeng, 8, 259-265(2013).

    [67] J Y Long, C X Zhou, Z Q Cao, X Z Xie, W Hu. Incubation effect during laser-induced backside wet etching of sapphire using high-repetition-rate near-infrared nanosecond lasers. Opt Laser Technol, 109, 61-70(2019).

    [68] T Lee, D Jang, D Ahn, D Kim. Effect of liquid environment on laser-induced backside wet etching of fused silica. J Appl Phys, 107, 033112(2010).

    [69] X M Liu, Z Long, J He, X H Liu, Y F Hou et al. Temperature effect on the impact of a liquid-jet against a rigid boundary. Optik, 124, 1542-1546(2013).

    [70] W Soliman, T Nakano, N Takada, K Sasaki. Modification of Rayleigh-Plesset theory for reproducing dynamics of cavitation bubbles in liquid-phase laser ablation. Jpn J Appl Phys, 49, 116202(2010).

    [71] Z Q Cao, X Z Xie, W F Chen, X Wei, W Hu et al. Research progress of pressure detection and applications in liquid-assisted laser machining. Opto-Electron Eng, 44, 381-392(2017).

    [72] Z Q Cao. Study on the detection of cavitation and pressure in the process of laser induced backside wet etching of sapphire substrates(2018).

    [73] L L Qiao, F He, C Wang, Y Cheng, K Sugioka et al. A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining. Appl Phys A, 102, 179-183(2011).

    [74] J Liu, Z Zhang, Z Lu, G Xiao, F Sun et al. Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses. Appl Phys B, 86, 151-154(2007).

    [75] S Queste, R Salut, S Clatot, J Y Rauch, C G Khan Malek. Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding. Microsyst Technol, 16, 1485-1493(2010).

    [76] L F Ji, Y Hu, J Li, W H Wang, Y J Jiang. High-precision micro-through-hole array in quartz glass machined by infrared picosecond laser. Appl Phys A, 121, 1163-1169(2015).

    [77] X Y Gao. Study on the development of working solution and processing mechanism of laser wet etching sapphire Substrat(2014).

    [78] W Jiang. Study on the mechanism of micro Nano suspended particle assisted laser-induced backside wet dicing of sapphire substrate(2017).

    [79] J J Shen, G X Luo, Y Pan, Z J Liu, Z H Jiang. Research on glass cutting process base on 532 nm wavelength nanosecond laser. Appl Laser, 35, 493-499(2015).

    [80] A Rolo, J Coelho, M Pires. Laser glass marking: influence of pulse characteristics. Proc SPIE, 5958, 59583D(2005).

    [81] T Nakazumi, T Sato, A Narazaki, H Niino. Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference. J Micromechan Microeng, 26, 095015(2016).

    [82] T Dumont, T Lippert, A Wokaun, P Leyvraz. Laser writing of 2D data matrices in glass. Thin Solid Films, 453-454, 42-45(2004).

    [83] X M Zhang, J Q Ma, Y F Ding. Analysis of marking glass with different process parameters based on super-pulsed laser. Adv Mater Res, 602-604, 929-933(2013).

    [84] T Sato, A Narazaki, H Niino. Fabrication of micropits by LIBWE for laser marking of glass materials. J Laser Micro/Nanoeng, 12, 248-253(2017).

    [85] X Ding, Y Yasui, Y Kawaguchi, H Niino, A Yabe. Laser-induced back-side wet etching of fused silica with an aqueous solution containing organic molecules. Appl Phys A, 75, 437-440(2002).

    [86] X Ding, Y Kawaguchi, H Niino, A Yabe. Laser-induced high-quality etching of fused silica using a novel aqueous medium. Appl Phys A, 75, 641-645(2002).

    [87] X M Ding, T Sato, Y Kawaguchi, H Niino. Laser-induced backside wet etching of sapphire. Jpn J Appl Phys, 42, 176-178(2003).

    [88] J Wang, H Niino, A Yabe. Micromachining of quartz crystal with excimer lasers by laser-induced backside wet etching. Appl Phys A, 69, S271-S273(1999).

    [89] H Niino, Y Kawaguchi, T Sato, A Narazaki, T Gumpenberger et al. Laser ablation of toluene liquid for surface micro-structuring of silica glass. Appl Surf Sci, 252, 4387-4391(2006).

    [90] I B Sohn, H K Choi, D Yoo, Y C Noh, J H Sung et al. Synchronized femtosecond laser pulse switching system based nano-patterning technology. Opt Mater, 69, 295-302(2017).

    [91] J Bekesi, J Meinertz, P Simon, J Ihlemann. Sub-500-nm patterning of glass by nanosecond KrF excimer laser ablation. Appl Phys A, 110, 17-21(2013).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Laser machining of transparent brittle materials: from machining strategies to applications[J]. Opto-Electronic Advances, 2019, 2(1): 180017
    Download Citation