• Journal of Inorganic Materials
  • Vol. 36, Issue 3, 283 (2021)
Wen XI and Haibo LI*
Author Affiliations
  • Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Ningxia 750021, China
  • show less
    DOI: 10.15541/jim20200243 Cite this Article
    Wen XI, Haibo LI. Preparation of TiO2/Ti3C2Tx Composite for Hybrid Capacitive Deionization[J]. Journal of Inorganic Materials, 2021, 36(3): 283 Copy Citation Text show less
    References

    [1] X XU, H TAN, Z WANG et al. Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano- polyhedra for brackish water desalination. Environmental Science: Nano, 6, 981-989(2019).

    [2] A SHANNON M, W BOHN P, M ELIMELECH et al. Science and technology for water purification in the coming decades. Nature, 452, 301-310(2008).

    [3] L LI, J ZHAO, Y SUN et al. Ionically cross-linked sodium alginate/ ĸ-carrageenan double-network gel beads with low-swelling, enhanced mechanical properties, and excellent adsorption performance. Chemical Engineering Journal, 372, 1091-1103(2019).

    [4] X XU, E ALLAH A, C WANG et al. Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination. Chemical Engineering Journal, 362, 887-896(2019).

    [5] T CUI, T YANG, Y XU C et al. Assessment of the impact of climate change on flow regime at multiple temporal scales and potential ecological implications in an alpine river. Stochastic Environmental Research and Risk Assessment, 32, 1849-1866(2018).

    [6] F ZHAO, Z. H YUAN, L B ZHONG et al. Review on electrode materials and Capacitive Deionization (CDI) technology for desalination. Technology of Water Treatment, 42, 38-44(2016).

    [7] B PEÑATE, L GARCÍA-RODRÍGUEZ. Current trends and future prospects in the design of seawater reverse osmosis desalination technology. Desalination, 284, 1-8(2012).

    [8] D ZHAO, Y LEE L, L ONG S et al. Electrodialysis reversal for industrial reverse osmosis brine treatment. Separation and Purification Technology, 213, 339-347(2019).

    [9] P LEE K, C ARNOT T, D MATTIA. A review of reverse osmosis membrane materials for desalination-development to date and future potential. Journal of Membrane Science, 370, 1-22(2011).

    [10] J GAO C, Y ZHOU, F LIU L. Recent development and prospect of seawater reverse osmosis desalination technology. Journal of Ocean Technology, 35, 1-12(2016).

    [11] Y ZHOU, C YU S, J GAO C. Reverse osmosis composite membrane (Ⅰ) chemical structure and performance. Journal of Chemical Industry and Engineering, 57, 1370-1373(2006).

    [12] Y CHEN, M YUE, H HUANG Z et al. Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization. Chemical Engineering Journal, 252, 30-37(2014).

    [13] L TIAN X, L WANG, B CHI et al. Formation of a tubular assembly by ultrathin Ti0.8Co0.2N nanosheets as efficient oxygen reduction electrocatalysts for hydrogen-/metal-air fuel cells. ACS Catalysis, 8, 8970-8975(2018).

    [14] H GALAMA A, M SAAKES, H BRUNING et al. Seawater predesalination with electrodialysis. Desalination, 342, 61-69(2014).

    [15] D DENG, W AOUAD, A BRAFF W et al. Water purification by shock electrodialysis: deionization, filtration, separation, and disinfection. Desalination, 357, 77-83(2015).

    [16] Y YAN H, M WANG Y, X JIANG C et al. Ion exchange membrane electrodialysis for high salinity wastewater “zero liquid discharge”: applications, opportunities and challenges. Chemical Industry and Engineering Progress, 38, 672-681(2019).

    [17] X AN, Z LIU, Y HU. Amphiphobic surface modification of electrospun nanofibrous membranes for anti-wetting performance in membrane distillation. Desalination, 432, 23-31(2018).

    [18] F LIU L, S ZHOU Y, J XUE et al. Enhanced antipressure ability through graphene oxide membrane by intercalating g-C3N4 nanosheets for water purification. AICHE Journal, 65(2019).

    [19] Q HOU Q, Y WU, SH ZHOU et al. Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixd-linker strategy for enhanced CO2/CH4 separation. Angewandte Chemie- International Edition, 58, 327-331(2019).

    [20] S AL-MUTAZ I, I WAZEER. Comparative performance evaluation of conventional multi-effect evaporation desalination processes. Applied Thermal Engineering, 73, 1194-1203(2014).

    [21] S PORADA, R ZHAO, A VAN DER WAL et al. Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58, 1388-1442(2013).

    [22] J YAN J, F SHAO S, H WANG J et al. Improvement of a multi- stage flash seawater desalination system for cogeneration power plants. Desalination, 217, 191-202(2007).

    [23] A AVLONITIS S, K KOUROUMBAS, N VLACHAKIS. Energy consumption and membrane replacement cost for seawater RO desalination plants. Desalination, 157, 151-158(2003).

    [24] C WU Y, W YING D, L WANG Y et al. Capacitive desalination technology and its application in wastewater treatment. Technology of Water Treatment, 45, 1-15(2019).

    [25] J LEE, S KIM, C KIM et al. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy & Environmental Science, 7, 3683-3689(2014).

    [26] Y WANG S, G WANG, P CHE X et al. Enhancing the capacitive deionization performance of NaMnO2 by interface engineering and redox-reaction. Environmental Science: Nano, 6, 2379-2388(2019).

    [27] M NAGUIB, M KURTOGLU, V PRESSER et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248-4253(2011).

    [28] B ANASORI, R LUKATSKAYA M, Y GOGOTSI. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098(2017).

    [29] M NAGUIB, N MOCHALIN V, W BARSOUM M et al. Two- dimensional materials: 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 26, 982-982(2014).

    [30] M ALHABEB, K MALESKI, B ANASORI et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29, 7633-7644(2017).

    [31] L DING, B LI L, C LIU Y et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nature Sustainability, 3, 296(2020).

    [32] L DING, D XIAO, Z LU et al. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angewandte Chemie-International Edition, 59, 8720-8726(2020).

    [33] J GUO, Q PENG, H FU et al. Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. The Journal of Physical Chemistry C, 119, 20923-20930(2015).

    [34] E REN C, B HATZELL K, M ALHABEB et al. Charge-and size- selective ion sieving through Ti3C2Tx MXene membranes. The Journal of Physical Chemistry Letters, 6, 4026-4031(2015).

    [35] Q TANG, Z ZHOU, P SHEN. Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer. Journal of the American Chemical Society, 134, 16909-16916(2012).

    [36] X GUO, X ZHANG, S ZHAO et al. High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Physical Chemistry Chemical Physics, 18, 228-233(2016).

    [37] B ANASORI, Y XIE, M BEIDAGHI et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 9, 9507-9516(2015).

    [38] ZONG LU, Y WEI Y, J DENG J et al. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano, 3, 10535-10544(2019).

    [39] P SRIMUK, F KAASIK, B KRÜNER et al. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. Journal of Materials Chemistry, 4, 18265-18271(2016).

    [40] W BAO, X TANG, X GUO et al. Porous cryo-dried MXene for efficient capacitive deionization. Joule, 2, 778-787(2018).

    [41] X LOW J, Y ZHANG L, T TONG et al. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. Journal of Catalysis, 361, 255-266(2018).

    [42] L AGARTAN, K HANTANASIRISAKUL, S BUCZEK et al. Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2Tx-MXene membrane capacitive deionization system. Desalination, 477, 114267(2020).

    [43] L GUO, X WANG, Y LEONG Z et al. Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination. Flat. Chem., 8, 17-24(2018).

    [44] J MA, Y CHENG, L WANG et al. Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity. Chemical Engineering Journal, 384, 123329(2020).

    [45] A AMIRI, Y CHEN, B TENG C et al. Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Storage Mater., 25, 731-739(2020).

    [46] W XI, B LI H. Pseudo-capacitive deionization behavior of CuAl- mixed metal. Environmental Science: Water Research & Technology, 6, 296-302(2020).

    Wen XI, Haibo LI. Preparation of TiO2/Ti3C2Tx Composite for Hybrid Capacitive Deionization[J]. Journal of Inorganic Materials, 2021, 36(3): 283
    Download Citation