• Journal of Semiconductors
  • Vol. 43, Issue 11, 112301 (2022)
Kaixuan Chen1、2, Gengxin Chen3, Ziliang Ruan3, Xuancong Fan1、2, Junwei Zhang4, Ranfeng Gan1, Jie Liu4, Daoxin Dai3、5, Changjian Guo1、2, and Liu Liu3、5、*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Higher-Education Mega-Center, Guangzhou 510006, China
  • 2National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
  • 3State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
  • 4State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
  • 5Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
  • show less
    DOI: 10.1088/1674-4926/43/11/112301 Cite this Article
    Kaixuan Chen, Gengxin Chen, Ziliang Ruan, Xuancong Fan, Junwei Zhang, Ranfeng Gan, Jie Liu, Daoxin Dai, Changjian Guo, Liu Liu. Four-channel CWDM transmitter chip based on thin-film lithium niobate platform[J]. Journal of Semiconductors, 2022, 43(11): 112301 Copy Citation Text show less
    References

    [1] P J Winzer, D T Neilson, A R Chraplyvy. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt Express, 26, 24190(2018).

    [2] J Liu, Y Ye, L Deng et al. Integrated four-channel directly modulated O-band optical transceiver for radio over fiber application. Opt Express, 26, 21490(2018).

    [3] R Arima, T Yamashita, T Yahagi et al. Demonstration of world-first 103 Gbit/s transmission over 40 km single mode fiber by 1310 nm LAN-WDM optical transceiver for 100GbE. National Fiber Optic Engineers Conference, JWA9(2011).

    [4] T Fujisawa, S Kanazawa, H Ishii et al. 1.3-μm × 25-Gb/s monolithically integrated light source for metro area 100-Gb/s ethernet. IEEE Photonics Technol Lett, 23, 356(2011).

    [5] S Kanazawa, T Fujisawa, A Ohki et al. A compact EADFB laser array module for a future 100-Gb/s Ethernet transceiver. IEEE J Sel Top Quantum Electron, 17, 1191(2011).

    [6] A Ramaswamy, J Roth, E J Norberg et al. A WDM 4× 28Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs. Optical Fiber Communication Conference, Th5B.5(2015).

    [7] T Murao, N Yasui, T Shinada et al. Integrated spatial optical system for compact 28-Gb/s × 4-lane transmitter optical subassemblies. IEEE Photonics Technol Lett, 26, 2275(2014).

    [8] H Zhang, M Li, Y Zhang et al. 800 Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter. Photonics Res, 8, 1776(2020).

    [9] H Mardoyan, F Jorge, O Ozolins et al. 204-GBaud on-off keying transmitter for inter-data center communications. Optical Fiber Communication Conference, Th4A.4(2018).

    [10] K Zhong, X Zhou, J Huo et al. Digital signal processing for short-reach optical communications: A review of current technologies and future trends. J Lightwave Technol, 36, 377(2018).

    [11] S Motaghiannezam. Optical PAM4 signaling and system performance for DCI applications. Optical Fiber Communication Conference, M3A.1(2019).

    [12] D Zhu, L Shao, M Yu et al. Integrated photonics on thin-film lithium niobate. Adv Opt Photonics, 13, 242(2021).

    [13] E L Wooten, K M Kissa, A Yi-Yan et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron, 6, 69(2000).

    [14] S Saravi, T Pertsch, F Setzpfandt. Lithium niobate on insulator: An emerging platform for integrated quantum photonics. Adv Opt Mater, 9, 2100789(2021).

    [15] D Marpaung, J Yao, J Capmany. Integrated microwave photonics. Nat Photonics, 13, 80(2019).

    [16] C Wang, M Zhang, X Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [17] J Jian, M Xu, L Liu et al. High modulation efficiency lithium niobate Michelson interferometer modulator. Opt Express, 27, 18731(2019).

    [18] D Pohl, A Messner, F Kaufmann et al. 100-Gbd waveguide Bragg grating modulator in thin-film lithium niobate. IEEE Photonics Technol Lett, 33, 85(2020).

    [19] M Xu, M He, Y Zhu et al. Integrated thin film lithium niobate Fabry–Perot modulator. Chin Opt Lett, 19, 060003(2021).

    [20] Shams-Ansari A, Renaud D, Cheng R, et al. Electrically-pumped high-power laser transmitter integrated on thin-film lithium niobate. arXiv preprint arXiv: 2111.08473, 2021

    [21] G Chen, Z Ruan, Z Wang et al. Four-channel CWDM device on a thin-film lithium niobate platform using an angled multimode interferometer structure. Photonics Res, 10, 8(2022).

    [22] G Chen, K Chen, R Gan et al. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode. APL Photonics, 7, 026103(2022).

    [23] J Wang, P Chen, D Dai et al. Polarization coupling of X-cut thin film lithium niobate based waveguides. IEEE Photonics J, 12, 1(2020).

    [24] P Kharel, C Reimer, K Luke et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 8, 357(2021).

    [25] P Ying, H Tan, J Zhang et al. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter. Opt Lett, 46, 1478(2021).

    Kaixuan Chen, Gengxin Chen, Ziliang Ruan, Xuancong Fan, Junwei Zhang, Ranfeng Gan, Jie Liu, Daoxin Dai, Changjian Guo, Liu Liu. Four-channel CWDM transmitter chip based on thin-film lithium niobate platform[J]. Journal of Semiconductors, 2022, 43(11): 112301
    Download Citation