• INFRARED
  • Vol. 42, Issue 8, 38 (2021)
Rui-juan DU*, Song-hao LU, and Shuang GONG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1672-8785.2021.08.006 Cite this Article
    DU Rui-juan, LU Song-hao, GONG Shuang. Research Status of Dragonfly Flapping-Wing Micro Air Vehicle[J]. INFRARED, 2021, 42(8): 38 Copy Citation Text show less
    References

    [3] Wootton R, Kukalovapeck J, Newman D, et al. Smart engineering in the mid-carboniferous: how well could palaeozoic dragonflies fly?[J]. Science, 1998, 282(5389): 749-751.

    [4] Azuma A, Azuma S, Watanabe I, et al. Flight mechanics of a dragonfly[J]. Journal of Experimental Biology, 1985, 116(1): 79-107.

    [5] Wang G, Guo Z, Liu W. Interfacial effects of superhydrophobic plant surfaces: a review[J]. Journal of Bionic Engineering, 2014, 11(3): 325-345.

    [6] Newman D J S, Wootton R J. An approach to the mechanics of pleating in dragonfly wings[J]. Journal of Experimental Biology, 1986, 125(1): 361-372.

    [7] Darvizeh M, Darvizeh A, Rajabi H, et al. Free vibration analysis of dragonfly wings using finite element method[J]. The International Journal of Multiphysics, 2009, 3(1): 101-110.

    [8] Wang X S, Li Y, Shi Y F. Effects of sandwich microstructures on mechanical behaviors of dragonfly wing vein[J]. Composites Science and Technology, 2008, 68(1): 186-192.

    [9] Arjangpay A, Darvizeh A, Tooski M Y. Effects of structural characteristics of a bionic dragonfly wing on its low velocity impact resistance[J]. Journal of Bionic Engineering, 2018, 15(5): 859-871.

    [10] Chaudhuri A, Haftka R T, Ifju P, et al. Experimental flapping wing optimization and uncertainty quantification using limited samples[J]. Structural and Multidisciplinary Optimization, 2014, 51(4): 957-970.

    [11] Chen Y L, Wang X S, Ren H H, et al. An organic junction between the vein and membrane of the dragonfly wing[J]. Chinese Science Bulletin, 2011, 56(16): 1658-1660.

    [12] Newman D J S. The functional wing morphology of some Odonata[D]. Exeter : University of Exeter, 1982.

    [13] Rajabi H, Shafiei A, Darvizeh A, et al. Resilinmicrojoints: a smart design strategy to avoid failure in dragonfly wings[J]. Scientific Reports, 2016, 6(1): 39039.

    [14] Sudo S, Tsuyuki K, Kobayashi T. Experimental study on the collision of a droplet with a dragonfly wing[J]. Journal of the Japanese Society for Experimental Mechanics, 2005, 5(3): 272-279.

    [15] Ivanova E P, Hasan J, Webb H K, et al. Bactericidal activity of black silicon[J]. Nature Communications, 2013, 4: 2838.

    [17] Ellington C P. The aerodynamics of hovering insect flight. I. The quasi-steady analysis[J]. Philosophical Transactions of the Royal Society of London, 1984, 305(1122): 145-181.

    [18] Wang Z J. Unsteady forces and flows in low reynolds number hovering flight: two-dimensional computations vs robotic wing experiments[J]. Journal of Experimental Biology, 2004, 207(3): 449-460.

    [19] Wakeling J M, Ellington C P. Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight[J]. Journal of Experimental Biology, 1997, 200(3): 557-582.

    [21] Thomas A L R. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack[J]. Journal of Experimental Biology, 2004, 207(24): 4299-4323.

    [22] Murphy J T, Hu H. An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications[J]. Experiments in Fluids, 2010, 49(2): 531-546.

    [23] Ang H S, Xiao T H, Duan W B. Flight mechanism and design of biomimetic micro air vehicles[J]. Science in China, 2009, 52(12): 3722-3728.

    [24] Szabo P A K, D′Eleuterio G M T. At-scale lift experiments modeling dragonfly forewings[J]. Bioinspiration & Biomimetics, 2018, 13(4): 046008.

    [25] Dileo C, Deng X. Design of and experiments on a dragonfly-inspired robot[J]. Advanced Robotics, 2009, 23(7-8): 1003-1021.

    [26] Stoll W, Frontzek H, Festo A Get a1. Lightweight design with intelligent kinematics[EB/OL]. www.festo.com/net/SupportPortal/Files/248133/Festo_BionicOpter_en, 2016.

    [27] Chen S, Duan H, Deng Y, et al. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor[J]. Optical Engineering, 2017, 56(12): 124105.

    DU Rui-juan, LU Song-hao, GONG Shuang. Research Status of Dragonfly Flapping-Wing Micro Air Vehicle[J]. INFRARED, 2021, 42(8): 38
    Download Citation