• Acta Optica Sinica
  • Vol. 41, Issue 1, 0123002 (2021)
Hui Liu1、*, Zhiwei Yan1, Meng Xiao2, and Shining Zhu1
Author Affiliations
  • 1Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
  • 2Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
  • show less
    DOI: 10.3788/AOS202141.0123002 Cite this Article Set citation alerts
    Hui Liu, Zhiwei Yan, Meng Xiao, Shining Zhu. Recent Progress in Synthetic Dimension in Topological Photonics[J]. Acta Optica Sinica, 2021, 41(1): 0123002 Copy Citation Text show less
    References

    [1] Ward J, Benson O. WGM microresonators: sensing, lasing and fundamental optics with microspheres[J]. Laser & Photonics Reviews, 5, 553-570(2011). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201000025/abstract

    [2] Feng S, Lei T, Chen H et al. Silicon photonics: from a microresonator perspective[J]. Laser & Photonics Reviews, 6, 145-177(2012).

    [3] Kawachi M. Silica waveguides on silicon and their application to integrated-optic components[J]. Optical and Quantum Electronics, 22, 391-416(1990). http://link.springer.com/article/10.1007/BF02113964?LI=true

    [4] Joannopoulos J D, Villeneuve P R, Fan S H. Photonic crystals: putting a new twist on light[J]. Nature, 386, 143-149(1997). http://www.nature.com/nature/journal/v386/n6621/abs/386143a0.html

    [5] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 5, 523-530(2011). http://www.nature.com/nphoton/journal/v5/n9/abs/nphoton.2011.154.html

    [6] Liu Y, Zhang X. Metamaterials: a new frontier of science and technology[J]. Chemical Society Reviews, 40, 2494-2507(2011).

    [7] Yuan L Q, Lin Q, Xiao M et al. Synthetic dimension in photonics[J]. Optica, 5, 1396(2018).

    [8] Ozawa T, Price H M, Amo A et al. Topological photonics[J]. Reviews of Modern Physics, 91, 015006(2019).

    [9] Ozawa T, Price H M. Topological quantum matter in synthetic dimensions[J]. Nature Reviews Physics, 1, 349-357(2019). http://www.nature.com/articles/s42254-019-0045-3

    [10] Kikuchi K. Fundamentals of coherent optical fiber communications[J]. Journal of Lightwave Technology, 34, 157-179(2016).

    [11] Boada O, Celi A, Latorre J I et al. Quantum simulation of an extra dimension[J]. Physical Review Letters, 108, 133001(2012). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204111918070.html

    [12] Kraus Y E, Zilberberg O. Topological equivalence between the Fibonacci quasicrystal and the Harper model[J]. Physical Review Letters, 109, 116404(2012). http://www.ncbi.nlm.nih.gov/pubmed/23005656

    [13] Mei F, Zhu S L, Zhang Z M et al. Simulating Z2 topological insulators with cold atoms in a one-dimensional optical lattice[J]. Physical Review A, 85, 013638(2012).

    [14] Gómez-León A, Platero G. Floquet-Bloch theory and topology in periodically driven lattices[J]. Physical Review Letters, 110, 200403(2013). http://europepmc.org/abstract/MED/25167386

    [15] Ganeshan S, Sun K, Das Sarma S. Topological zero-energy modes in gapless commensurate Aubry-André-Harper models[J]. Physical Review Letters, 110, 180403(2013).

    [16] Xu Z H, Li L H, Chen S. Fractional topological states of dipolar fermions in one-dimensional optical superlattices[J]. Physical Review Letters, 110, 215301(2013).

    [17] Kraus Y E, Ringel Z, Zilberberg O. Four-dimensional quantum Hall effect in a two-dimensional quasicrystal[J]. Physical Review Letters, 111, 226401(2013). http://smartsearch.nstl.gov.cn/paper_detail.html?id=748d498d3c38032dfbc355722a507243

    [18] Celi A, Massignan P, Ruseckas J et al. Synthetic gauge fields in synthetic dimensions[J]. Physical Review Letters, 112, 043001(2014). http://www.ncbi.nlm.nih.gov/pubmed/24580445

    [19] Mei F, You J B, Zhang D W et al. Topological insulator and particle pumping in a one-dimensional shaken optical lattice[J]. Physical Review A, 90, 063638(2014). http://adsabs.harvard.edu/abs/2014phrva..90f3638m

    [20] Boada O, Celi A, Rodríguez-Laguna J et al. Quantum simulation of non-trivial topology[J]. New Journal of Physics, 17, 045007(2015). http://arxiv.org/abs/1409.4770

    [21] Price H M, Zilberberg O, Ozawa T et al. Four-dimensional quantum Hall effect with ultracold atoms[J]. Physical Review Letters, 115, 195303(2015). http://europepmc.org/abstract/MED/26588394

    [22] Mancini M, Pagano G, Cappellini G et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons[J]. Science, 349, 1510-1513(2015).

    [23] Stuhl B K, Lu H I, Aycock L M et al. Visualizing edge states with an atomic Bose gas in the quantum Hall regime[J]. Science, 349, 1514-1518(2015).

    [24] Nakajima S, Tomita T, Taie S et al. Topological Thouless pumping of ultracold fermions[J]. Nature Physics, 12, 296-300(2016).

    [25] Lohse M, Schweizer C, Zilberberg O et al. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice[J]. Nature Physics, 12, 350-354(2016). http://www.nature.com/articles/nphys3584/

    [26] Zeng T S, Zhu W, Sheng D N. Fractional charge pumping of interacting bosons in one-dimensional superlattice[J]. Physical Review B, 94, 235139(2016).

    [27] Suszalski D, Zakrzewski J. Different lattice geometries with a synthetic dimension[J]. Physical Review A, 94, 033602(2016). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.033602

    [28] Taddia L, Cornfeld E, Rossini D et al. Topological fractional pumping with alkaline-earth-like atoms in synthetic lattices[J]. Physical Review Letters, 118, 230402(2017).

    [29] Price H M, Ozawa T, Goldman N. Synthetic dimensions for cold atoms from shaking a harmonic trap[J]. Physical Review A, 95, 023607(2017). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.023607

    [30] Martin I, Refael G, Halperin B. Topological frequency conversion in strongly driven quantum systems[J]. Physical Review X, 7, 041008(2017).

    [31] Baum Y, Refael G. Setting boundaries with memory: generation of topological boundary states in floquet-induced synthetic crystals[J]. Physical Review Letters, 120, 106402(2018).

    [32] Peng Y, Refael G. Topological energy conversion through the bulk or the boundary of driven systems[J]. Physical Review B, 97, 134303(2018).

    [33] Lohse M, Schweizer C, Price H M et al. Exploring 4D quantum Hall physics with a 2D topological charge pump[J]. Nature, 553, 55-58(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=eabbfc98c6b9bc5e6a57b0d8adad727b

    [34] Shang C, Chen X F, Luo W D et al. Quantum anomalous Hall-quantum spin Hall effect in optical superlattices[J]. Optics Letters, 43, 275-278(2018). http://europepmc.org/abstract/MED/29328258

    [35] Chen L C, Wang P J, Meng Z M et al. Experimental observation of one-dimensional superradiance lattices in ultracold atoms[J]. Physical Review Letters, 120, 193601(2018). http://www.ncbi.nlm.nih.gov/pubmed/29799222

    [36] Anisimovas E. Ra iūnas M, Sträter C, et al. Semisynthetic zigzag optical lattice for ultracold bosons[J]. Physical Review A, 94, 063632(2016).

    [37] Livi L F, Cappellini G, Diem M et al. Synthetic dimensions and spin-orbit coupling with an optical clock transition[J]. Physical Review Letters, 117, 220401(2016). http://europepmc.org/abstract/med/27925719

    [38] Kolkowitz S, Bromley S L, Bothwell T et al. Spin-orbit-coupled fermions in an optical lattice clock[J]. Nature, 542, 66-70(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=737493c6726fcb5a372cd9ee2a83711e

    [39] An F A, Meier E J, Gadway B. Direct observation of chiral currents and magnetic reflection in atomic flux lattices[J]. Science Advances, 3, e1602685(2017). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5400427/

    [40] Pelegrí G, Polo J, Turpin A et al. Single-atom edgelike states via quantum interference[J]. Physical Review A, 95, 013614(2017). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.013614

    [41] Graß T, Celi A, Lewenstein M. Quantum magnetism of ultracold atoms with a dynamical pseudospin degree of freedom[J]. Physical Review A, 90, 043628(2014). http://www.oalib.com/paper/3485049

    [42] Zeng T S, Wang C, Zhai H. Charge pumping of interacting fermion atoms in the synthetic dimension[J]. Physical Review Letters, 115, 095302(2015). http://www.ncbi.nlm.nih.gov/pubmed/26371662

    [43] Barbarino S, Taddia L, Rossini D et al. Synthetic gauge fields in synthetic dimensions: interactions and chiral edge modes[J]. New Journal of Physics, 18, 035010(2016). http://fr.arxiv.org/abs/1510.05603

    [44] Łᶏcki M, Pichler H, Sterdyniak A et al. Quantum Hall physics with cold atoms in cylindrical optical lattices[J]. Physical Review A, 93, 013604(2016). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.013604

    [45] Strinati M C, Cornfeld E, Rossini D, fermionic atomic synthetic ladders[EB/OL] et al. -06-04)[2020-10-29]. https:∥arxiv., org/abs/1612, 06682(2017).

    [46] Jünemann J, Piga A, Ran S J et al. Exploring interacting topological insulators with ultracold atoms: the synthetic creutz-Hubbard model[J]. Physical Review X, 7, 031057(2017). http://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.031057

    [47] Strauch F W, Williams C J. Theoretical analysis of perfect quantum state transfer with superconducting qubits[J]. Physical Review B, 78, 094516(2008).

    [48] Tsomokos D I, Ashhab S, Nori F. Using superconducting qubit circuits to engineer exotic lattice systems[J]. Physical Review A, 82, 052311(2010).

    [49] Mei F, Xue Z Y, Zhang D W et al. Witnessing topological Weyl semimetal phase in a minimal circuit-QED lattice[J]. Quantum Science and Technology, 1, 015006(2016).

    [50] Bilitewski T, Cooper N R. Synthetic dimensions in the strong-coupling limit: supersolids and pair superfluids[J]. Physical Review A, 94, 023630(2016).

    [51] Zhang S C, Hu J. A four-dimensional generalization of the quantum Hall effect[J]. Science, 294, 823-828(2001).

    [52] Qi X L, Hughes T L, Zhang S C. Topological field theory of time-reversal invariant insulators[J]. Physical Review B, 81, 159901(2010).

    [53] Lian B, Zhang S C. Five-dimensional generalization of the topological Weyl semimetal[J]. Physical Review B, 94, 041105(2016). http://dx.doi.org/10.1103/physrevb.94.041105

    [54] Lian B, Zhang S C. Weyl semimetal and topological phase transition in five dimensions[J]. Physical Review B, 95, 235106(2017). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.235106

    [55] Roy R, Harper F. Periodic table for floquet topological insulators[J]. Physical Review B, 96, 155118(2017).

    [56] Schwartz A, Fischer B. Laser mode hyper-combs[J]. Optics Express, 21, 6196-6204(2013).

    [57] Yuan L Q, Xiao M, Lin Q et al. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation[J]. Physical Review B, 97, 104105(2018).

    [58] Luo X W, Zhou X, Li C F et al. Quantum simulation of 2D topological physics in a 1D array of optical cavities[J]. Nature Communications, 6, 7704(2015). http://europepmc.org/abstract/MED/26145177

    [59] Luo X W, Zhou X, Xu J S et al. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light[J]. Nature Communications, 8, 16097(2017). http://www.ncbi.nlm.nih.gov/pubmed/28706215

    [60] Luo X W, Zhang C W, Guo G C et al. Topological photonic orbital-angular-momentum switch[J]. Physical Review A, 97, 043841(2018).

    [61] Sun B Y, Luo X W, Gong M et al. Weyl semimetal phases and implementation in degenerate optical cavities[J]. Physical Review A, 96, 013857(2017). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.013857

    [62] Zhou X F, Luo X W, Wang S et al. Dynamically manipulating topological physics and edge modes in a single degenerate optical cavity[J]. Physical Review Letters, 118, 083603(2017).

    [63] Rechtsman M C, Zeuner J M, Plotnik Y et al. Photonic floquet topological insulators[J]. Nature, 496, 196-200(2013).

    [64] Jiang T S, Xiao M, Chen W J et al. Experimental demonstration of angular momentum-dependent topological transport using a transmission line network[J]. Nature Communications, 10, 434(2019). http://www.nature.com/articles/s41467-018-08281-9

    [65] Cardano F. D'Errico A, Dauphin A, et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons[J]. Nature Communications, 8, 15516(2017).

    [66] Wang B, Chen T, Zhang X D. Experimental observation of topologically protected bound states with vanishing Chern numbers in a two-dimensional quantum walk[J]. Physical Review Letters, 121, 100501(2018). http://www.researchgate.net/publication/327487098_Experimental_Observation_of_Topologically_Protected_Bound_States_with_Vanishing_Chern_Numbers_in_a_Two-Dimensional_Quantum_Walk

    [67] Yuan L Q, Fan S H. Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator[J]. Optica, 3, 1014-1018(2016). http://www.researchgate.net/publication/309103380_Bloch_oscillation_and_unidirectional_translation_of_frequency_in_a_dynamically_modulated_ring_resonator

    [68] Dutt A, Minkov M, Lin Q et al. Experimental band structure spectroscopy along a synthetic dimension[J]. Nature Communications, 10, 3122(2019). http://www.nature.com/articles/s41467-019-11117-9

    [69] Yuan L Q, Shi Y, Fan S H. Photonic gauge potential in a system with a synthetic frequency dimension[J]. Optics Letters, 41, 741-744(2016). http://www.opticsinfobase.org/abstract.cfm?uri=ol-41-4-741

    [70] Lin Q, Xiao M, Yuan L et al. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension[J]. Nature Communications, 7, 13731(2016). http://www.nature.com/articles/ncomms13731

    [71] Bravo-Abad J, Lu L, Fu L et al. Weyl points in photonic-crystal superlattices[J]. 2D Materials, 2, 034013(2015). http://adsabs.harvard.edu/abs/2015TDM.....2c4013B

    [72] Lu L, Wang Z Y, Ye D X et al. -02-11)[2020-10-29]. https: ∥arxiv., org/abs/1502, 03438(2015).

    [73] Chen W J, Xiao M, Chan C T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states[J]. Nature Communications, 7, 13038(2016). http://europepmc.org/articles/PMC5059475/

    [74] Wang L Y, Jian S K, Yao H. Topological photonic crystal with equifrequency Weyl points[J]. Physical Review A, 93, 061801(2016). http://dx.doi.org/10.1103/physreva.93.061801

    [75] Zhang Y, Zhu Y Y. Generation of Weyl points in coupled optical microdisk-resonator arrays via external modulation[J]. Physical Review A, 96, 013811(2017).

    [76] Lin Q, Sun X Q, Xiao M et al. 4(10): eaat2774(2018).

    [77] Ozawa T, Price H M, Goldman N et al. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics[J]. Physical Review A, 93, 043827(2016). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.043827

    [79] Juki D, Buljan H. Four-dimensional photonic lattices and discrete tesseract solitons[J]. Physical Review A, 87, 013814(2013).

    [80] Cai Y, Roslund J, Ferrini G et al. Multimode entanglement in reconfigurable graph states using optical frequency combs[J]. Nature Communications, 8, 15645(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5467165/

    [81] Yuan L, Lin Q, Zhang A et al. Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions[J]. Physical Review Letters, 122, 083903(2019).

    [82] Yang Z J, Lustig E, Harari G et al. Mode-locked topological insulator laser utilizing synthetic dimensions[J]. Physical Review X, 10, 011059(2020). http://www.researchgate.net/publication/339839802_Mode-Locked_Topological_Insulator_Laser_Utilizing_Synthetic_Dimensions/download

    [83] Yuan L Q, Lin Q, Xiao M et al. Pulse shortening in an actively mode-locked laser with parity-time symmetry[J]. APL Photonics, 3, 086103(2018). http://www.researchgate.net/publication/327355395_Pulse_shortening_in_an_actively_mode-locked_laser_with_parity-time_symmetry

    [84] Harris S. McDuff O. Theory of FM laser oscillation[J]. IEEE Journal of Quantum Electronics, 1, 245-262(1965).

    [85] McDuff O, Harris S. Nonlinear theory of the internally loss-modulated laser[J]. IEEE Journal of Quantum Electronics, 3, 101-111(1967).

    [86] Haus H. A theory of forced mode locking[J]. IEEE Journal of Quantum Electronics, 11, 323-330(1975). http://ieeexplore.ieee.org/document/1068636/references

    [87] Haus H A. Mode-locking of lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1173-1185(2000).

    [88] Qin C, Zhou F, Peng Y et al. Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials[J]. Physical Review Letters, 120, 133901(2018). http://europepmc.org/abstract/MED/29694196

    [89] Qin C Z, Yuan L Q, Wang B et al. Effective electric-field force for a photon in a synthetic frequency lattice created in a waveguide modulator[J]. Physical Review A, 97, 063838(2018). http://www.researchgate.net/publication/325839873_Effective_electric-field_force_for_a_photon_in_a_synthetic_frequency_lattice_created_in_a_waveguide_modulator

    [90] Qin C Z, Wang B, Wong Z J et al. Discrete diffraction and Bloch oscillations in non-Hermitian frequency lattices induced by complex photonic gauge fields[J]. Physical Review B, 101, 064303(2020). http://www.researchgate.net/publication/339249486_Discrete_diffraction_and_Bloch_oscillations_in_non-Hermitian_frequency_lattices_induced_by_complex_photonic_gauge_fields

    [91] Lee N R A, Pechal M, Wollack E A et al. Propagation of microwave photons along a synthetic dimension[J]. Physical Review A, 101, 053807(2020).

    [92] Qin C Z, Liu Q J, Wang B et al. Photonic Weyl phase transition in dynamically modulated brick-wall waveguide arrays[J]. Optics Express, 26, 20929-20943(2018).

    [93] Tzuang L D, Soltani M. Lee Y H D, et al. High RF carrier frequency modulation in silicon resonators by coupling adjacent free-spectral-range modes[J]. Optics Letters, 39, 1799-1802(2014). http://www.ncbi.nlm.nih.gov/pubmed/24686608

    [94] Wang C, Burek M J, Lin Z et al. Integrated high quality factor lithium niobate microdisk resonators[J]. Optics Express, 22, 30924-30933(2014).

    [95] Zhang M, Wang C, Cheng R et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 4, 1536-1537(2017).

    [96] Peschel U, Bersch C, Onishchukov G. Discreteness in time[J]. Central European Journal of Physics, 6, 619-627(2008).

    [97] Bersch C, Onishchukov G, Peschel U. Experimental observation of spectral Bloch oscillations[J]. Optics Letters, 34, 2372-2374(2009).

    [98] Bell B A, Wang K, Solntsev A S et al. Spectral photonic lattices with complex long-range coupling[J]. Optica, 4, 1433-1436(2017).

    [99] Yuan L Q, Wang D W, Fan S H. Synthetic gauge potential and effective magnetic field in a Raman medium undergoing molecular modulation[J]. Physical Review A, 95, 033801(2017). http://arxiv.org/abs/1612.06464

    [100] Li W, Qin C, Han T et al. Bloch oscillations in photonic spectral lattices through phase-mismatched four-wave mixing[J]. Optics Letters, 44, 5430-5433(2019). http://www.ncbi.nlm.nih.gov/pubmed/31730075

    [101] Zhang F X, Feng Y M, Chen X F et al. Synthetic anti-PT symmetry in a single microcavity[J]. Physical Review Letters, 124, 053901(2020). http://www.researchgate.net/publication/339014584_Synthetic_Anti-PT_Symmetry_in_a_Single_Microcavity

    [102] Schmidt M, Kessler S, Peano V et al. Optomechanical creation of magnetic fields for photons on a lattice[J]. Optica, 2, 635-641(2015). http://www.opticsinfobase.org/abstract.cfm?uri=optica-2-7-635

    [103] Ozawa T, Carusotto I. Synthetic dimensions with magnetic fields and local interactions in photonic lattices[J]. Physical Review Letters, 118, 013601(2017).

    [104] Lustig E, Weimann S, Plotnik Y et al. Photonic topological insulator in synthetic dimensions[J]. Nature, 567, 356-360(2019). http://www.ncbi.nlm.nih.gov/pubmed/30778196

    [105] Dutt A, Lin Q, Yuan L Q et al. A single photonic cavity with two independent physical synthetic dimensions[J]. Science, 367, 59-64(2020). http://ui.adsabs.harvard.edu/abs/arXiv:1909.04828

    [106] Yu S, Piao X J, Hong J et al. Interdimensional optical isospectrality inspired by graph networks[J]. Optica, 3, 836-839(2016).

    [107] Maczewsky L J, Wang K, Dovgiy A A et al. Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices[J]. Nature Photonics, 14, 76-81(2020). http://www.researchgate.net/publication/337955318_Synthesizing_multi-dimensional_excitation_dynamics_and_localization_transition_in_one-dimensional_lattices

    [108] Wimmer M, Regensburger A, Bersch C et al. Optical diametric drive acceleration through action-reaction symmetry breaking[J]. Nature Physics, 9, 780-784(2013). http://www.nature.com/articles/nphys2777/

    [109] Schreiber A, Cassemiro K N, Potocek V et al. Photons walking the line: a quantum walk with adjustable coin operations[J]. Physical Review Letters, 104, 050502(2010). http://www.ncbi.nlm.nih.gov/pubmed/20366754

    [110] Schreiber A, Cassemiro K N. Poto ek V, et al. Decoherence and disorder in quantum walks: from ballistic spread to localization[J]. Physical Review Letters, 106, 180403(2011). http://prl.aps.org/abstract/PRL/v106/i18/e180403

    [111] Regensburger A, Bersch C, Hinrichs B et al. Photon propagation in a discrete fiber network: an interplay of coherence and losses[J]. Physical Review Letters, 107, 233902(2011).

    [112] Regensburger A, Bersch C, Miri M A et al. Parity-time synthetic photonic lattices[J]. Nature, 488, 167-171(2012). http://europepmc.org/abstract/med/22874962

    [113] Regensburger A, Miri M A, Bersch C et al. Observation of defect states in PT-symmetric optical lattices[J]. Physical Review Letters, 110, 223902(2013).

    [114] Wimmer M, Regensburger A, Miri M A et al. Observation of optical solitons in PT-symmetric lattices[J]. Nature Communications, 6, 7782(2015). http://europepmc.org/articles/PMC4525206

    [115] Wimmer M, Price H M, Carusotto I et al. Experimental measurement of the Berry curvature from anomalous transport[J]. Nature Physics, 13, 545-550(2017). http://www.nature.com/nphys/journal/v13/n6/abs/nphys4050.html

    [116] Vatnik I D, Tikan A, Onishchukov G et al. Anderson localization in synthetic photonic lattices[J]. Scientific Reports, 7, 4301(2017). http://www.nature.com/articles/s41598-017-04059-z

    [117] Wang S L, Wang B, Lu P X. PT -symmetric Talbot effect in a temporal mesh lattice[J]. Physical Review A, 98, 043832(2018).

    [118] Schreiber A, Gábris A, Rohde P P et al. A 2D quantum walk simulation of two-particle dynamics[J]. Science, 336, 55-58(2012).

    [119] Chen C, Ding X, Qin J et al. Observation of topologically protected edge states in a photonic two-dimensional quantum walk[J]. Physical Review Letters, 121, 100502(2018). http://www.researchgate.net/publication/327484493_Observation_of_Topologically_Protected_Edge_States_in_a_Photonic_Two-Dimensional_Quantum_Walk

    [120] Sun K, Gu Z C, Katsura H et al. Nearly flatbands with nontrivial topology[J]. Physical Review Letters, 106, 236803(2011). http://prl.aps.org/abstract/PRL/v106/i23/e236803

    [121] Tang E, Mei J W, Wen X G. High-temperature fractional quantum Hall states[J]. Physical Review Letters, 106, 236802(2011).

    [122] Umucalılar R O, Carusotto I. Fractional quantum Hall states of photons in an array of dissipative coupled cavities[J]. Physical Review Letters, 108, 206809(2012). http://dx.doi.org/10.1103/physrevlett.108.206809

    [123] Qin C Z, Wang B, Lu P X. Frequency diffraction management through arbitrary engineering of photonic band structures[J]. Optics Express, 26, 25721-25735(2018). http://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-20-25721

    [124] Mross D F, Alicea J, Motrunich O I. Explicit derivation of duality between a free Dirac cone and quantum electrodynamics in (2+1) dimensions[J]. Physical Review Letters, 117, 016802(2016).

    [125] Fang K, Yu Z, Fan S. Photonic Aharonov-Bohm effect based on dynamic modulation[J]. Physical Review Letters, 108, 153901(2012). http://d.wanfangdata.com.cn/periodical/edc859d3aeca8556ef2af1ec1e85302c

    [126] Fang K J, Yu Z F, Fan S H. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation[J]. Nature Photonics, 6, 782-787(2012). http://www.nature.com/nphoton/journal/v6/n11/full/nphoton.2012.236.html

    [127] Yuan L Q, Fan S H. Three-dimensional dynamic localization of light from a time-dependent effective gauge field for photons[J]. Physical Review Letters, 114, 243901(2015). http://arxiv.org/abs/1502.06037v1

    [128] Longhi S. Dynamic localization and Bloch oscillations in the spectrum of a frequency mode-locked laser[J]. Optics Letters, 30, 786-788(2005).

    [129] Bersch C, Onishchukov G, Peschel U. Spectral and temporal Bloch oscillations in optical fibres[J]. Applied Physics B, 104, 495-501(2011). http://link.springer.com/article/10.1007/s00340-011-4627-8

    [130] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 392, 45-57(1984). http://rspa.royalsocietypublishing.org/content/392/1802/45.abstract

    [131] Resta R. Manifestations of Berry's phase in molecules and condensed matter[J]. Journal of Physics: Condensed Matter, 12, R107-R143(2000). http://www.ingentaconnect.com/content/iop/jphyscm/2000/00000012/00000009/art00201

    [132] Roushan P, Neill C, Chen Y et al. Observation of topological transitions in interacting quantum circuits[J]. Nature, 515, 241-244(2014).

    [133] Schroer M D, Kolodrubetz M H, Kindel W F et al. Measuring a topological transition in an artificial spin-1/2 system[J]. Physical Review Letters, 113, 050402(2014). http://europepmc.org/abstract/MED/25126902

    [134] Yale C G, Joseph Heremans F, Zhou B B et al. Optical manipulation of the Berry phase in a solid-state spin qubit[J]. Nature Photonics, 10, 184-189(2016). http://www.nature.com/nphoton/journal/v10/n3/abs/nphoton.2015.278.html

    [135] Aubry S, André G. Analyticity breaking and Anderson localization in incommensurate lattices. [C]∥Proceedings of the Ⅷ International Colloquium on Group-Theoretical Methods in Physics, Kiryat Anavim, March 25-29, 133-164(1979).

    [136] Kraus Y E, Lahini Y, Ringel Z et al. Topological States and adiabatic pumping in quasicrystals[J]. Physical Review Letters, 109, 106402(2012). http://www.ncbi.nlm.nih.gov/pubmed/23005308

    [137] Zilberberg O, Huang S, Guglielmon J et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics[J]. Nature, 553, 59-62(2018).

    [138] Verbin M, Zilberberg O, Kraus Y E et al. Observation of topological phase transitions in photonic quasicrystals[J]. Physical Review Letters, 110, 076403(2013). http://europepmc.org/abstract/med/25166388

    [139] Rodriguez A W. McCauley A P, Avniel Y, et al. Computation and visualization of photonic quasicrystal spectra via Bloch's theorem[J]. Physical Review B, 77, 104201(2008).

    [140] Wang Q, Xiao M, Liu H et al. -08-17)[2020-10-29]. https:∥arxiv., org/abs/1708, 05664(2017).

    [141] Fan X Y, Qiu C Y, Shen Y Y et al. Probing Weyl physics with one-dimensional sonic crystals[J]. Physical Review Letters, 122, 136802(2019). http://www.ncbi.nlm.nih.gov/pubmed/31012611

    [142] Wang Q, Wang Q, Wang Q et al. Exceptional cones in 4D parameter space[J]. Optics Express, 28, 1758-1770(2020).

    [143] Zhong F, Ding K, Zhang Y et al. Angle-resolved thermal emission spectroscopy characterization of non-Hermitian metacrystals[J]. Physical Review Applied, 13, 014071(2020). http://www.researchgate.net/publication/338958498_Angle-Resolved_Thermal_Emission_Spectroscopy_Characterization_of_Non-Hermitian_Metacrystals

    [144] Hu M Y, Ding K, Qiao T et al. Realization of photonic charge-2 Dirac point by engineering super-modes in topological superlattices[J]. Communications Physics, 3, 130(2020). http://www.researchgate.net/publication/343161569_Realization_of_photonic_charge-2_Dirac_point_by_engineering_super-modes_in_topological_superlattices/download

    [145] Lu L, Gao H Z, Wang Z. Topological one-way fiber of second Chern number[J]. Nature Communications, 9, 5384(2018).

    Hui Liu, Zhiwei Yan, Meng Xiao, Shining Zhu. Recent Progress in Synthetic Dimension in Topological Photonics[J]. Acta Optica Sinica, 2021, 41(1): 0123002
    Download Citation