• Chinese Journal of Lasers
  • Vol. 49, Issue 19, 1910002 (2022)
Xiaolu Li*, Yier Zhou, Tengfei Bi, Ruiqin Yu, Zining Wang, Jianbin Huang, and Lijun Xu**
Author Affiliations
  • School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.3788/CJL202249.1910002 Cite this Article Set citation alerts
    Xiaolu Li, Yier Zhou, Tengfei Bi, Ruiqin Yu, Zining Wang, Jianbin Huang, Lijun Xu. Review on Key Technologies of Lightweight Type-Aware LiDAR[J]. Chinese Journal of Lasers, 2022, 49(19): 1910002 Copy Citation Text show less
    References

    [1] Chen J W, Shi Y M, Zhu H et al. Research on the development and application of landing radar in deep space explorations[J]. Spacecraft Recovery & Remote Sensing, 41, 10-20(2020).

    [2] Zhang H F, Cheng Z E, Li P et al. Design of lidar cooperative target and its application to space rendezvous and docking[J]. Infrared and Laser Engineering, 44, 2556-2561(2015).

    [3] Wang Y[R]. LiDAR industry analysis(2021).

    [4] Luo Y, He Y, Gao M et al. Fiber laser-based scanning lidar for space rendezvous and docking[J]. Applied Optics, 54, 2470-2476(2015).

    [5] Ning Y Q, Chen Y Y, Zhang J et al. Brief review of development and techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 41, 0114001(2021).

    [6] Wang Y, Cui B F, Fang T X. Research progress of VCSEL[J]. Optoelectronics, 7, 50-57(2017).

    [7] Aull B F, Duerr E K, Frechette J P et al. Large-format Geiger-mode avalanche photodiode arrays and readout circuits[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 3800510(2018).

    [8] Kumagai O, Ohmachi J, Matsumura M et al. 7.3 A 189×600 back-illuminated stacked SPAD direct time-of-flight depth sensor for automotive LiDAR systems[C], 110-112(2021).

    [9] Agishev R. Modeling of microjoule and millijoule energy LIDARs with PMT/SiPM/APD detectors: a sensitivity analysis[J]. Applied Optics, 57, 3679-3686(2018).

    [10] Eshkoli A, Nemirovsky Y. Characterization and architecture of monolithic N’P-CMOS-SiPM array for ToF measurements[J]. IEEE Transactions on Instrumentation and Measurement, 70, 2002909(2021).

    [11] Bohren J, Foote T, Keller J et al. Little Ben: the Ben Franklin racing team’s entry in the 2007 DARPA urban challenge[J]. Journal of Field Robotics, 25, 598-614(2008).

    [12] Niclass C, Ito K, Soga M et al. Design and characterization of a 256×64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor[J]. Optics Express, 20, 11863-11881(2012).

    [13] Ito K, Niclass C, Aoyagi I et al. System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256×64-pixel single-photon imager[J]. IEEE Photonics Journal, 5, 6800114(2013).

    [14] Zhu C X, Hobbs M J, Grainger M P et al. Design and realization of a wide field of view infrared scanning system with an integrated micro-electromechanical system mirror[J]. Applied Optics, 57, 10449-10457(2018).

    [15] Sandner T, Graßhoff T, Owe W D et al. System integration of hybrid large aperture micro scanner array for fast scanning LiDAR sensors[J]. Proceedings of SPIE, 11293, 112930Z(2020).

    [16] Poulton C V, Byrd M J, Russo P et al. Long-range LiDAR and free-space data communication with high-performance optical phased arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 7700108(2019).

    [17] Hsu C P, Li B D, Solano-Rivas B et al. A review and perspective on optical phased array for automotive LiDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 8300416(2021).

    [18] Sornsin B A, Short B W, Bourbeau T N et al. Global shutter solid state flash lidar for spacecraft navigation and docking applications[J]. Proceedings of SPIE, 11005, 110050W(2019).

    [19] Jin C F, Wang Y, Cao L et al. Design of fiber-array imaging laser radar system[J]. Opto-Electronic Engineering, 39, 115-123(2012).

    [20] Zhou G Q, Zhou X, Yang J Z et al. Flash lidar sensor using fiber-coupled APDs[J]. IEEE Sensors Journal, 15, 4758-4768(2015).

    [21] Cattini S, Cassanelli D, Cecilia L D et al. A procedure for the characterization and comparison of 3-D LiDAR systems[J]. IEEE Transactions on Instrumentation and Measurement, 70, 7002110(2021).

    [22] Li D, Xu L J, Xie X H et al. Co-path full-waveform LiDAR for detection of multiple along-path objects[J]. Optics and Lasers in Engineering, 111, 211-221(2018).

    [23] Liu C, Xu L J, Si L et al. A robust deconvolution method of airborne LiDAR waveforms for dense point clouds generation in forest[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5700314(2022).

    [24] Shan C M, Sun H Y, Zhao Y Z et al. Temporal distribution characteristics of reflection light of coherent Gaussian beams passing through Cassegrain lens[J]. Chinese Journal of Lasers, 44, 1205001(2017).

    [25] Li D, Xu L J, Li X L et al. Asymmetrical-Gaussian-model-based laser echo detection[J]. IEEE Sensors Journal, 19, 3797-3806(2019).

    [26] Li X L, Li Y Y, Xie X H et al. Lab-built terrestrial laser scanner self-calibration using mounting angle error correction[J]. Optics Express, 26, 14444-14460(2018).

    [27] Xu Y L, Yang Q, Yang K F et al. Challenges and key technologies of point cloud quality assessment[J]. Journal of Communication University of China (Science and Technology), 28, 11-21(2021).

    [28] Alexiou E, Ebrahimi T, Bernardo M V et al. Point cloud subjective evaluation methodology based on 2D rendering[C], 132-137(2018).

    [29] MPEG 3DG[S](2016).

    [30] Meynet G, Digne J, Lavoué G. PC-MSDM: a quality metric for 3D point clouds[C](2019).

    [31] Viola I, Subramanyam S, Cesar P. A color-based objective quality metric for point cloud contents[C](2020).

    [32] Ma C C, Li S, Cao J J et al. Feature points extraction of point cloud based on normal vector and density[J]. Computer Applications and Software, 37, 256-260, 292(2020).

    [33] Crespo-Peremarch P, Fournier R A, Nguyen V T et al. A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data[J]. Forest Ecology and Management, 473, 118268(2020).

    [34] Jansson J P, Koskinen V, Mantyniemi A et al. A multichannel high-precision CMOS time-to-digital converter for laser-scanner-based perception systems[J]. IEEE Transactions on Instrumentation and Measurement, 61, 2581-2590(2012).

    [35] Seo H, Yoon H, Kim D et al. Direct TOF scanning LiDAR sensor with two-step multievent histogramming TDC and embedded interference filter[J]. IEEE Journal of Solid-State Circuits, 56, 1022-1035(2021).

    [36] Xie W J, Wang Y, Chen H C et al. 128-channel high-linearity resolution-adjustable time-to-digital converters for LiDAR applications: software predictions and hardware implementations[J]. IEEE Transactions on Industrial Electronics, 69, 4264-4274(2022).

    [37] Magruder L A, Neuenschwander A L, Marmillion S P et al. Obstruction detection comparison of small-footprint full-waveform and discrete return lidar[J]. Proceedings of SPIE, 7684, 768410(2010).

    [38] RIEGL[EB/OL]. Ultra high performance 3D laser scanner. http://products.rieglusa.com/Asset/Datasheet-RIEGL-VZ-400i-1.pdf

    [39] Azadbakht M, Fraser C S, Khoshelham K. A sparsity-based regularization approach for deconvolution of full-waveform airborne lidar data[J]. Remote Sensing, 8, 648(2016).

    [40] Li D, Liu M L, Ma R et al. An 8-ch LIDAR receiver based on TDC with multi-interval detection and real-time in situ calibration[J]. IEEE Transactions on Instrumentation and Measurement, 69, 5081-5090(2020).

    [41] Xie X H, Xu L J, Wang Z N et al. Real-time in situ laser ranging based on online echo waveform fitting[J]. IEEE Sensors Journal, 19, 9255-9262(2019).

    [42] Niclass C, Rochas A, Besse P A et al. Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes[J]. IEEE Journal of Solid-State Circuits, 40, 1847-1854(2005).

    [43] Niclass C, Favi C, Kluter T et al. A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array[J]. IEEE Journal of Solid-State Circuits, 43, 2977-2989(2008).

    [44] Niclass C, Soga M, Matsubara H et al. A 0.18-μm CMOS SoC for a 100-m-range 10-frame/s 200×96-pixel time-of-flight depth sensor[J]. IEEE Journal of Solid-State Circuits, 49, 315-330(2014).

    [45] Hutchings S W, Johnston N, Gyongy I et al. A reconfigurable 3-D-stacked SPAD imager with in-pixel histogramming for flash LIDAR or high-speed time-of-flight imaging[J]. IEEE Journal of Solid-State Circuits, 54, 2947-2956(2019).

    [46] Zhang C, Lindner S, Antolović I M et al. A 30-frames/s, 252×144 SPAD flash LiDAR with 1728 dual-clock 48.8-ps TDCs, and pixel-wise integrated histogramming[J]. IEEE Journal of Solid-State Circuits, 54, 1137-1151(2019).

    [47] Yoshioka K, Kubota H, Fukushima T et al. A 20-ch TDC/ADC hybrid architecture LiDAR SoC for 240×96 pixel 200-m range imaging with smart accumulation technique and residue quantizing SAR ADC[J]. IEEE Journal of Solid-State Circuits, 53, 3026-3038(2018).

    [48] Kondo S, Kubota H, Katagiri H et al. An automotive LiDAR SoC for 240×192-pixel 225-m-range imaging with a 40-channel 0.0036-mm2 voltage/time dual-data-converter-based AFE[J]. IEEE Journal of Solid-State Circuits, 55, 2866-2877(2020).

    [49] Zhu S X, Zhao Y Q, Ye M et al. Saturated echo signal algorithm for wide dynamic range lidar[J]. Acta Photonica Sinica, 47, 1228003(2018).

    [50] Liu Y, Zhu J J, Roberts N et al. Recovery of saturated signal waveform acquired from high-energy particles with artificial neural networks[J]. Nuclear Science and Techniques, 30, 148(2019).

    [51] Wang Z N, Xu L J, Li D et al. Online multi-target laser ranging using waveform decomposition on FPGA[J]. IEEE Sensors Journal, 21, 10879-10889(2021).

    [52] Liang M, Ma K. Study on the method of echo signal denoising based on Gauss filter[J]. Geomatics & Spatial Information Technology, 40, 40-42(2017).

    [53] Schafer R W. What is a Savitzky-Golay filter?[J]. IEEE Signal Processing Magazine, 28, 111-117(2011).

    [54] Li X L, Zhang Z X, Xie X H et al. A multi-target on-line ranging method based on matrix sparsification and a division-free Gauss-Jordan solver[J]. Measurement Science and Technology, 32, 095207(2021).

    [55] Babu C N, Reddy B E. A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data[J]. Applied Soft Computing, 23, 27-38(2014).

    [56] Iqbal I A, Dash J, Ullah S et al. A novel approach to estimate canopy height using ICESat/GLAS data: a case study in the New Forest National Park, UK[J]. International Journal of Applied Earth Observation and Geoinformation, 23, 109-118(2013).

    [57] Zhao X L, Xia H, Zhao J H et al. Adaptive wavelet threshold denoising for bathymetric laser full-waveforms with weak bottom returns[J]. IEEE Geoscience and Remote Sensing Letters, 19, 1503505(2022).

    [58] Song Y, Li H P, Zhai G J et al. Comparison of multichannel signal deconvolution algorithms in airborne LiDAR bathymetry based on wavelet transform[J]. Scientific Reports, 11, 16988(2021).

    [59] He L[D]. Research on small-footprint ALS full-waveform data processing technology(2015).

    [60] Liu J, Yao Y M, Li P N et al. Parameter optimization wavelet denoising algorithm for full-waveforms data of laser altimetry satellite[J]. Chinese Journal of Lasers, 48, 2310001(2021).

    [61] Huang N E, Shen Z, Long S R et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 454, 903-995(1998).

    [62] Cheng X, Mao J D, Li J et al. An EEMD-SVD-LWT algorithm for denoising a lidar signal[J]. Measurement, 168, 108405(2021).

    [63] Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 1, 1-41(2009).

    [64] Boudraa A O, Cexus J C. EMD-based signal filtering[J]. IEEE Transactions on Instrumentation and Measurement, 56, 2196-2202(2007).

    [65] Zhang Z J, Liu X F, Shu R et al. A novel noise reduction method for space-borne full waveforms based on empirical mode decomposition[J]. Optik, 202, 163581(2020).

    [66] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 62, 531-544(2014).

    [67] Hua T, Dai K R, Zhang X J et al. Optimal VMD-based signal denoising for laser radar via Hausdorff distance and wavelet transform[J]. IEEE Access, 7, 167997-168010(2019).

    [68] Qi B L, Yang G H, Guo D B et al. EMD and VMD-GWO parallel optimization algorithm to overcome lidar ranging limitations[J]. Optics Express, 29, 2855-2873(2021).

    [69] Li X L, Luo P. Boosting ranging performance of LiDAR using multi-pulse coherent average[J]. IEEE Sensors Journal, 19, 6270-6278(2019).

    [70] Wang T[D]. Research on EMD algorithm and its application in signal denoising, 79-87(2010).

    [71] Ding H B, Wang Z Z, Liu D. Comparison of de-noising methods of LiDAR signal[J]. Acta Optica Sinica, 41, 2401001(2021).

    [72] Wang Z H, Liu X D, Liu X F. Wavelet and empirical mode decomposition denoising for GLAS full waveform data[J]. Laser & Optoelectronics Progress, 58, 2328001(2021).

    [73] Jutzi B, Stilla U. Range determination with waveform recording laser systems using a Wiener filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 61, 95-107(2006).

    [74] Nordin L[D]. Analysis of waveform data from airborne laser scanner systems(2006).

    [75] Roncat A, Bergauer G, Pfeifer N. B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 418-428(2011).

    [76] Wu J Y, van Aardt J A N, Asner G P. A comparison of signal deconvolution algorithms based on small-footprint LiDAR waveform simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 49, 2402-2414(2011).

    [77] Chauve A, Vega C, Durrieu S et al. Advanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in an alpine coniferous forest[J]. International Journal of Remote Sensing, 30, 5211-5228(2009).

    [78] Mountrakis G, Li Y G. A linearly approximated iterative Gaussian decomposition method for waveform LiDAR processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 129, 200-211(2017).

    [79] Guo K, Xu W X, Liu Y X et al. Gaussian half-wavelength progressive decomposition method for waveform processing of airborne laser bathymetry[J]. Remote Sensing, 10, 35(2017).

    [80] Xie X H, Xu L J, Li X L et al. Online Gauss-Newton-based parallel-pipeline method for real-time in-situ laser ranging[J]. IEEE Sensors Journal, 20, 7087-7096(2020).

    [81] Muralikrishnan B, Ferrucci M, Sawyer D et al. Volumetric performance evaluation of a laser scanner based on geometric error model[J]. Precision Engineering, 40, 139-150(2015).

    [82] Bu Y M, Du X P, Zeng Z Y et al. Research progress and trend analysis of non-scanning laser 3D imaging radar[J]. Chinese Optics, 11, 711-727(2018).

    [83] Kang J J, Zhang F M, Qu X H. Angle measuring error analysis of coordinate measuring system of laser radar[J]. Laser Technology, 40, 834-839(2016).

    [84] Zhou Y, Lu Y F, Hei M et al. Pointing error analysis of Risley-prism-based beam steering system[J]. Applied Optics, 53, 5775-5793(2014).

    [85] Brazeal R G, Wilkinson B E, Hochmair H H. A rigorous observation model for the Risley prism-based Livox Mid-40 lidar sensor[J]. Sensors, 21, 4722(2021).

    [86] Guo D B, Wang C H, Qi B L et al. A study of correction to the point cloud distortion based on MEMS LiDAR system[J]. Applied Sciences, 11, 2418(2021).

    [87] Miao X, Li H F, Zhang Y H et al. Analysis and correction of image distortion in MEMS galvanometer scanning confocal system[J]. Infrared and Laser Engineering, 50, 20200206(2021).

    [88] Spollard J T, Gozzard D R, Roberts L E et al. Towards solid-state beam steering using a 7-emitter 1550 nm optical phased array[J]. Proceedings of SPIE, 10910, 109101P(2019).

    [89] Zhang W C, Li L J, Chen W. A chaotic stochastic parallel gradient descent algorithm for fast phase correction of optical phased array[J]. Proceedings of SPIE, 11209, 1120956(2019).

    [90] Tang H[D]. Development of optical phase control performance test system for optical phased array (OPA)(2021).

    [91] Lichti D D. Ray-tracing method for deriving terrestrial laser scanner systematic errors[J]. Journal of Surveying Engineering, 143, 06016005(2017).

    [92] Abbas M A, Lichti D D, Chong A K et al. An on-site approach for the self-calibration of terrestrial laser scanner[J]. Measurement, 52, 111-123(2014).

    [93] Pejić M, Ogrizović V, Božić B et al. A simplified procedure of metrological testing of the terrestrial laser scanners[J]. Measurement, 53, 260-269(2014).

    [94] Li X L, Li Y Y, Xie X H et al. Terrestrial laser scanner autonomous self-calibration with no prior knowledge of point-clouds[J]. IEEE Sensors Journal, 18, 9277-9285(2018).

    [95] Holst C, Schunck D, Nothnagel A et al. Terrestrial laser scanner two-face measurements for analyzing the elevation-dependent deformation of the Onsala Space Observatory 20-m radio telescope’s main reflector in a bundle adjustment[J]. Sensors, 17, 1833(2017).

    [96] Wang L, Muralikrishnan B, Rachakonda P et al. Determining geometric error model parameters of a terrestrial laser scanner through two-face, length-consistency, and network methods[J]. Measurement Science & Technology, 28, 065016(2017).

    [97] Guan Y L, Cheng X J, Zhan X W et al. Research on systematic errors calibration of terrestrial laser scanner[J]. Acta Geodaetica et Cartographica Sinica, 43, 731-738(2014).

    [98] Shi S D, Muralikrishnan B, Sawyer D. Terrestrial laser scanner calibration and performance evaluation using the network method[J]. Optics and Lasers in Engineering, 134, 106298(2020).

    [99] Zhang Y, Yan L, Yang H et al. Research on systematic error model of terrestrial laser scanning[J]. Bulletin of Surveying and Mapping, 16, 16-19(2012).

    [100] Morales J, Plaza-Leiva V, Mandow A et al. Analysis of 3D scan measurement distribution with application to a multi-beam lidar on a rotating platform[J]. Sensors, 18, 395(2018).

    [101] Qin X S, Li X H, Tang X et al. Extrinsic calibration method of lidar and camera based on key points of calibration board[J]. Laser & Optoelectronics Progress, 59, 0428001(2022).

    [102] Chan T O, Lichti D D. Automatic in situ calibration of a spinning beam LiDAR system in static and kinematic modes[J]. Remote Sensing, 7, 10480-10500(2015).

    [103] Bastos D, Monteiro P P, Oliveira A S R et al. An overview of LiDAR requirements and techniques for autonomous driving[C](2021).

    [104] Yang F H. Analysis of lidar technology development based on autonomous driving competition[C], 170-173(2021).

    [105] Li Y, Ibanez-Guzman J. Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems[J]. IEEE Signal Processing Magazine, 37, 50-61(2020).

    [106] Tang J, Yellepeddi A, Demirtas S et al. Tracking to improve detection quality in lidar for autonomous driving[C], 2683-2687(2020).

    [107] Yoo H W, Druml N, Brunner D et al. MEMS-based lidar for autonomous driving[J]. E & I Elektrotechnik Und Informationstechnik, 135, 408-415(2018).

    [108] Takai I, Matsubara H, Soga M et al. Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems[J]. Sensors, 16, 459(2016).

    [109] Ouyang B[D]. Dynamic pose estimation based on 3D point cloud, 6-7(2015).

    [110] Nimelman M, Tripp J, Bailak G et al. Spaceborne scanning lidar system (SSLS)[J]. Proceedings of SPIE, 5798, 73-82(2005).

    [111] Christian J, Hinkel H, Maguire S et al. The sensor test for Orion RelNav risk mitigation (STORRM) development test objective[C], 6260(2011).

    [112] Hu J, Xie Y C, Zhang H et al. Shenzhou-8 spacecraft guidance navigation and control system and flight result evaluation for rendezvous and docking[J]. Aerospace Control and Application, 37, 1-5, 13(2011).

    [113] Xie Y C, Zhang H, Hu J et al. Automatic control system design of Shenzhou spacecraft for rendezvous and docking[J]. Scientia Sinica (Technologica), 44, 12-19(2014).

    [114] Christian J A, Cryan S. A survey of LIDAR technology and its use in spacecraft relative navigation[C], 4641(2013).

    [115] Xu Y, Ma L, Liu T et al. Chang’e-5 guidance navigation and control system for rendezvous and docking in lunar orbit[J]. Scientia Sinica (Technologica), 51, 788-798(2021).

    [116] Huang X Y, Zhang H H, Wang D Y et al. Autonomous navigation and guidance for Chang’e-3 soft landing[J]. Journal of Deep Space Exploration, 1, 52-59(2014).

    [117] Zhang H H, Liang J, Huang X Y et al. Autonomous hazard avoidance control for Chang’e-3 soft landing[J]. Scientia Sinica (Technologica), 44, 559-568(2014).

    [118] Shu R, Xu W M, Huang G H. Lidar systems for planetary navigation and soft landing[C], 502-505(2013).

    [119] Mizuno T, Kase T, Shiina T et al. Development of the laser altimeter (LIDAR) for Hayabusa2[J]. Space Science Reviews, 208, 33-47(2017).

    [120] Amzajerdian F, Roback V E, Bulyshev A E et al. Imaging flash LIDAR for safe landing on solar system bodies and spacecraft rendezvous and docking[J]. Proceedings of SPIE, 9465, 946502(2015).

    [121] Schindhelm E, Rohrschneider R, Roark S et al. A scanning LIDAR system for active hazard detection and avoidance during landing on Europa[C](2018).

    [122] Williams B, Antreasian P, Carranza E et al. OSIRIS-Rex flight dynamics and navigation design[J]. Space Science Reviews, 214, 69(2018).

    [123] Liu W W, Li M D, Li T et al. Design and qualification of hazard detection and avoidance system for Tianwen-1 Mars landing mission[J]. Journal of Astronautics, 43, 46-55(2022).

    Xiaolu Li, Yier Zhou, Tengfei Bi, Ruiqin Yu, Zining Wang, Jianbin Huang, Lijun Xu. Review on Key Technologies of Lightweight Type-Aware LiDAR[J]. Chinese Journal of Lasers, 2022, 49(19): 1910002
    Download Citation