• Laser & Optoelectronics Progress
  • Vol. 57, Issue 21, 210004 (2020)
Li Xiang1, Wang Xiaodan1, Ma Hai1, Wang Dan1, Mao Hongmin1, and Zeng Xionghui2
Author Affiliations
  • 1苏州科技大学数理学院,江苏省微纳热流技术与能源应用重点实验室, 江苏 苏州 215009
  • 2中国科学院苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123
  • show less
    DOI: 10.3788/LOP57.210004 Cite this Article Set citation alerts
    Li Xiang, Wang Xiaodan, Ma Hai, Wang Dan, Mao Hongmin, Zeng Xionghui. Research Progress on Adjusting and Controlling Luminescence Performance of GaN∶Eu 3+ Materials[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210004 Copy Citation Text show less
    References

    [1] Birkhahn R, Garter M, Steckl A J. Red light emission by photoluminescence and electroluminescence from Pr-doped GaN on Si substrates[J]. Applied Physics Letters, 74, 2161-2163(1999). http://scitation.aip.org/content/aip/journal/apl/74/15/10.1063/1.123787

    [2] Steckl A J, Park J H, Zavada J M. Prospects for rare earth doped GaN lasers on Si[J]. Materials Today, 10, 20-27(2007). http://www.sciencedirect.com/science/article/pii/S1369702107701761

    [3] Baker T J, Haskell B A, Wu F et al. Characterization of planar semipolar gallium nitride films on spinel substrates[J]. Japanese Journal of Applied Physics, 44, L920-L922(2005).

    [4] Zhu W, Mitchell B, Timmerman D et al. High-power Eu-doped GaN red LED based on a multilayer structure grown at lower temperatures by organometallic vapor phase epitaxy[J]. MRS Advances, 2, 159-164(2017). http://journals.cambridge.org/abstract_S2059852117000676

    [5] Ohkawa K, Watanabe T, Sakamoto M et al. 740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE[J]. Journal of Crystal Growth, 343, 13-16(2012). http://www.sciencedirect.com/science/article/pii/S0022024811011134

    [6] Hwang J, Hashimoto R, Saito S et al. Development of InGaN-based red LED grown on (0001) polar surface[J]. Applied Physics Express, 7, 071003(2014). http://ci.nii.ac.jp/naid/150000108406

    [7] McGonigle C, Gregorkiewicz T et al. Optical excitation and external photoluminescence quantum efficiency of Eu 3+ in GaN[J]. Scientific Reports, 4, 5235(2014).

    [8] Nishikawa A, Furukawa N, Lee D G et al. 1342: mrss11-1342-v02-08(2011).

    [9] Nishikawa A, Furukawa N, Kawasaki T et al. Improved luminescence properties of Eu-doped GaN light-emitting diodes grown by atmospheric-pressure organometallic vapor phase epitaxy[J]. Applied Physics Letters, 97, 051113(2010).

    [10] Nishikawa A, Kawasaki T, Furukawa N et al. Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection[J]. Applied Physics Express, 2, 071004(2009).

    [11] Fujiwara Y. 53(5S1): 05FA13[J]. Dierolf V. Present understanding of Eu luminescent centers in Eu-doped GaN grown by organometallic vapor phase epitaxy. Japanese Journal of Applied Physics(2014).

    [12] Mitchell B, Dierolf V, Gregorkiewicz T et al. Perspective: Toward efficient GaN-based red light emitting diodes using europium doping[J]. Journal of Applied Physics, 123, 160901(2018).

    [13] Ishii M, Koizumi A, Fujiwara Y. Enhancement in light efficiency of a GaN∶Eu red light-emitting diode by pulse-controlled injected charges[J]. Applied Physics Letters, 105, 171903(2014).

    [14] Inaba T, Mitchell B, Koizumi A et al. Emission enhancement and its mechanism of Eu-doped GaN by strain engineering[J]. Optical Materials Express, 7, 1381-1387(2017).

    [15] Kasai H, Nishikawa A, Kawasaki T et al. Improved Eu luminescence properties in Eu-doped GaN grown on GaN substrates by organometallic vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 49, 048001(2010).

    [16] Wang R, Steckl A J. Effect of growth conditions on Eu 3+ luminescence in GaN[J]. Journal of Crystal Growth, 312, 680-684(2010). http://www.sciencedirect.com/science/article/pii/S0022024809011178

    [17] Furukawa N, Nishikawa A, Kawasaki T et al. Atmospheric pressure growth of Eu-doped GaN by organometallic vapor phase epitaxy[J]. Physica Status Solidi A, 208, 445-448(2011).

    [18] Zhu W, Mitchell B, Timmerman D et al. Enhanced photo/electroluminescence properties of Eu-doped GaN through optimization of the growth temperature and Eu related defect environment[J]. APL Materials, 4, 056103(2016).

    [19] Nakanishi Y, Wakahara A, Okada H et al. Effects of implantation conditions on the luminescence properties of Eu-doped GaN[J]. Nuclear Instruments and Methods in Physics Research Section B, 206, 1033-1036(2003).

    [20] Roqan I S. O'Donnell K P, Martin R W, et al. Identification of the prime optical center in GaN∶ Eu 3+[J]. Physical Review B, 81, 085209(2010).

    [21] Lorenz K, Wahl U, Alves E et al. High-temperature annealing and optical activation of Eu-implanted GaN[J]. Applied Physics Letters, 85, 2712-2714(2004).

    [22] Wang X D, Mo Y J, Yang M M et al. Cathodoluminescence properties of Pr, Tm co-implanted GaN thin films[J]. Optical Materials Express, 6, 1692-1700(2016).

    [23] Wang X D, Mo Y J, Zeng X H et al. Simultaneous emission of red, green, and blue in Pr, Er, and Tm co-implanted GaN thin films[J]. Materials Chemistry and Physics, 199, 567-570(2017).

    [24] Lee D S, Heikenfeld J, Birkhahn R et al. Voltage-controlled yellow or orange emission from GaN codoped with Er and Eu[J]. Applied Physics Letters, 76, 1525-1527(2000).

    [25] Steckl A J, Heikenfeld J, Lee D S et al. Multiple color capability from rare earth-doped gallium nitride[J]. Materials Science and Engineering B, 81, 97-101(2001). http://www.sciencedirect.com/science/article/pii/S0921510700007455

    [26] Zhang L, Liu F Q, Liu C. Voltage-controlled variable light emissions from GaN codoped with Eu, Er, and Tm[J]. Applied Physics Letters, 91, 143514(2007).

    [27] Rodrigues J. Miranda S M C, Santos N F, et al. Rare earth co-doping nitride layers for visible light[J]. Materials Chemistry and Physics, 134, 716-720(2012).

    [28] Xia Y L, Wang X D, Zeng X H et al. Optical properties and energy transfer mechanism in Er 3+ and Eu 3+ co-doped GaN films[J]. Acta Photonica Sinica, 47, 0516001(2018).

    [29] Chen F F, Xia Y L, Wang X D et al. Raman scattering and cathodoluminescence properties of Er 3+ and Eu 3+ co-doped GaN films[J]. Journal of Luminescence, 206, 603-607(2019).

    [30] Kim S K, Rhee S J, Li X et al. Selective enhancement of 1540 nm Er 3+ emission centers in Er-implanted GaN by Mg codoping[J]. Applied Physics Letters, 76, 2403-2405(2000).

    [31] Takagi Y, Suwa T, Sekiguchi H et al. Effect of Mg codoping on Eu 3+ luminescence in GaN grown by ammonia molecular beam epitaxy[J]. Applied Physics Letters, 99, 171905(2011).

    [32] Lee D, Nishikawa A, Terai Y et al. Eu luminescence center created by Mg codoping in Eu-doped GaN[J]. Applied Physics Letters, 100, 171904(2012).

    [33] Sekiguchi H, Takagi Y, Otani T et al. Emission enhancement mechanism of GaN∶Eu by Mg codoping[J]. Journal of Applied Physics, 113, 013105(2013).

    [34] Masago A, Fukushima T, Sato K et al. Computational nano-materials design for circularly polarized luminescence in (Eu, Mg, O)-codoped GaN[J]. Applied Physics Express, 7, 121002(2014). http://adsabs.harvard.edu/abs/2014apexp...7l1002m

    [35] Yamaga M, Watanabe H, Kurahashi M et al. Indirect excitation of Eu 3+in GaN codoped with Mg and Eu[J]. Journal of Physics: Conference Series, 619, 012025(2015).

    [36] Sekiguchi H, Sakai M, Kamada T et al. Observation of single optical site of Eu and Mg codoped GaN grown by NH3-source molecular beam epitaxy[J]. Journal of Applied Physics, 125, 175702(2019).

    [37] Li X, Mai H, Wang X D, luminescent properties of Eu et al. 2020-01-02][J/OL]. Mg co-doped GaN. Chinese Journal of Rare Metals(2020). https://kns.cnki.net/kcms/detail/detail.aspx? FileName=ZXJS2019101100B&DbName=DKFX2019.

    [38] Lee D, Wakamatsu R, Koizumi A et al. Effect of thermal annealing on luminescence properties of Eu, Mg-codoped GaN grown by organometallic vapor phase epitaxy[J]. Applied Physics Letters, 102, 141904(2013).

    [39] Mitchell B, Lee D, Lee D et al. Vibrationally induced center reconfiguration in co-doped GaN∶Eu, Mg epitaxial layers: Local hydrogen migration vs. activation of non-radiative channels[J]. Applied Physics Letters, 103, 242105(2013).

    [40] Sekiguchi H, Sakai M, Kamada T et al. Optical sites in Eu- and Mg-codoped GaN grown by NH3-source molecular beam epitaxy[J]. Applied Physics Letters, 109, 151106(2016).

    [41] Singh A K. O’Donnell K P, Edwards P R, et al. Hysteretic photochromic switching of Eu-Mg defects in GaN links the shallow transient and deep ground states of the Mg acceptor[J]. Scientific Reports, 7, 41982(2017).

    [42] Krivolapchyuk V V, Mezdrogina M M, Kozhanova Y V et al. Sensitization of luminescence of wurtzite GaN crystals doped with Eu and the additionally introduced Zn impurity[J]. Semiconductors, 40, 1007-1015(2006). http://link.springer.com/article/10.1134/S106378260609003X

    [43] Mezdrogina M M, Krivolapchuk V V, Petrov V N et al. Effect of additionally introduced Zn and Eu dopants on the photoluminescence spectra of Er-doped GaN crystals[J]. Semiconductors, 40, 1378-1385(2006).

    [44] Mezdrogina M M, Krivolapchuk V V. Influence of additional Zn impurity on the photoluminescence spectra of GaN wurtzite crystals doped with Eu ions[J]. Physics of the Solid State, 48, 1250-1254(2006).

    [45] Wang R, Steckl A J, Brown E et al. Effect of Si codoping on Eu 3+ luminescence in GaN[J]. Journal of Applied Physics, 105, 043107(2009).

    [46] Bruno Cruz A V, Shinde P P, Kumar V et al. Energetics and electronic structure of GaN codoped with Eu and Si[J]. Physical Review B, 85, 045203(2012).

    [47] Lee D G, Wakamatsu R, Koizumi A et al. 52(8S): 08JM01[J]. Si into Eu-doped GaN. Japanese Journal of Applied Physics(2013).

    [48] Mishra J K, Langer T, Rossow U et al. Strong enhancement of Eu 3+ luminescence in europium-implanted GaN by Si and Mg codoping[J]. Applied Physics Letters, 102, 061115(2013).

    [49] Kaur P, Sekhon S S, Zavada J M et al. Enhanced stability of Eu in GaN nanoparticles: Effects of Si co-doping[J]. Journal of Applied Physics, 117, 224301(2015).

    Li Xiang, Wang Xiaodan, Ma Hai, Wang Dan, Mao Hongmin, Zeng Xionghui. Research Progress on Adjusting and Controlling Luminescence Performance of GaN∶Eu 3+ Materials[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210004
    Download Citation