• Laser & Optoelectronics Progress
  • Vol. 56, Issue 23, 230001 (2019)
Hongyang Xie1, Xiaochang Yu2、3, Qigan Gao4, Yang Su5, Zixiang Sun6, and Yiting Yu2、3、*
Author Affiliations
  • 1Department of Industrial Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
  • 2Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
  • 3Key Laboratory of Micro- and Nano-Electro-Mechanical Systems of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
  • 4Department of Environment Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
  • 5Department of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
  • 6Department of Composite Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
  • show less
    DOI: 10.3788/LOP56.230001 Cite this Article Set citation alerts
    Hongyang Xie, Xiaochang Yu, Qigan Gao, Yang Su, Zixiang Sun, Yiting Yu. Self-Assembled Colloidal Crystals in Field of Micro-Nano Optics[J]. Laser & Optoelectronics Progress, 2019, 56(23): 230001 Copy Citation Text show less
    References

    [1] Cong H L, Yu B, Tang J G et al. Current status and future developments in preparation and application of colloidal crystals[J]. Chemical Society Reviews, 42, 7774-7800(2013). http://onlinelibrary.wiley.com/doi/10.1002/chin.201348207/pdf

    [2] Lotito V, Zambelli T. Approaches to self-assembly of colloidal monolayers: a guide for nanotechnologists[J]. Advances in Colloid and Interface Science, 246, 217-274(2017). http://www.ncbi.nlm.nih.gov/pubmed/28669390

    [3] Dumanli A G, Savin T. Recent advances in the biomimicry of structural colours[J]. Chemical Society Reviews, 45, 6698-6724(2016). http://www.ncbi.nlm.nih.gov/pubmed/27510041

    [4] Zheng H B, Ravaine S. Bottom-up assembly and applications of photonic materials[J]. Crystals, 6, 54(2016).

    [5] Shrestha V R, Lee S S, Kim E S et al. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array[J]. Nano Letters, 14, 6672-6678(2014).

    [6] Sun C H, Min W L, Linn N C et al. Templated fabrication of large area subwavelength antireflection gratings on silicon[J]. Applied Physics Letters, 91, 231105(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4830108

    [7] Fu M, Zhou J, Xiao Q et al. ZnO nanosheets with ordered pore periodicity via colloidal crystal template assisted electrochemical deposition[J]. Advanced Materials, 18, 1001-1004(2006). http://onlinelibrary.wiley.com/doi/10.1002/adma.200502658/pdf

    [8] Zhang J T, Smith N, Asher S A. Two-dimensional photonic crystal surfactant detection[J]. Analytical Chemistry, 84, 6416-6420(2012).

    [9] Mathger L M. Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus[J]. Journal of Experimental Biology, 206, 3607-3613(2003).

    [10] Rassart M, Colomer J F, Tabarrant T et al. Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules[J]. New Journal of Physics, 10, 033014(2008).

    [11] Wang M Q, Wang X G. Electrodeposition zinc-oxide inverse opal and its application in hybrid photovoltaics[J]. Solar Energy Materials and Solar Cells, 92, 357-362(2008). http://www.sciencedirect.com/science/article/pii/S0927024807003820

    [12] Liu C Y, Long Y, Yang B Q et al. Facile fabrication of micro-grooves based photonic crystals towards anisotropic angle-independent structural colors and polarized multiple reflections[J]. Science Bulletin, 62, 938-942(2017). http://www.sciencedirect.com/science/article/pii/S209592731730258X

    [13] Zhang Y Z, Wang J X, Zhao Y et al. Photonic crystal concentrator for efficient output of dye-sensitized solar cells[J]. Journal of Materials Chemistry, 18, 2650-2652(2008). http://pubs.rsc.org/en/content/articlepdf/2008/jm/b803644f

    [14] Ramiro-Manzano F, Atienzar P, Rodriguez I et al[J]. Apollony photonic sponge based photoelectrochemical solar cells Chemical Communications, 2007, 242-244.

    [15] Nichols J E, Cortiella J, Lee J et al. In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry[J]. Biomaterials, 30, 1071-1079(2009).

    [16] Hoi S K, Chen X, Kumar V S et al. A microfluidic chip with integrated colloidal crystal for online optical analysis[J]. Advanced Functional Materials, 21, 2847-2853(2011). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201002632/full

    [17] Lu G, Farha O K, Kreno L E et al. Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing[J]. Advanced Materials, 23, 4449-4452(2011).

    [18] Honda M, Kataoka K, Seki T et al. Confined stimuli-responsive polymer gel in inverse opal polymer membrane for colorimetric glucose sensor[J]. Langmuir, 25, 8349-8356(2009).

    [19] Dolganova I N, Chernomyrdin N V, Aleksandrova P V et al. Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography[J]. Journal of Biomedical Optics, 23, 091406(2018). http://europepmc.org/abstract/MED/29644811

    [20] Mahmood R, Mettry A, Hillier A C. Templating colloidal crystal growth using chirped surface relief gratings[J]. Langmuir, 34, 8828-8838(2018).

    [21] Braun P V, Wiltzius P. Macroporous materials: electrochemically grown photonic crystals[J]. Current Opinion in Colloid & Interface Science, 7, 116-123(2002). http://www.nature.com/nature/journal/v402/n6762/full/402603b0.html

    [22] Rogach A L, Kotov N A, Koktysh D S et al. Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals[J]. Chemistry of Materials, 12, 2721-2726(2000).

    [23] Chen J, Dong P T, Di D et al. Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating[J]. Applied Surface Science, 270, 6-15(2013). http://www.sciencedirect.com/science/article/pii/S016943321202140X

    [24] He Y, Zhu B, Zeng X C et al. Fabrication of large-area, close-packed, monolayer colloidal crystals via a hybrid method of spin coating and peeling-draining[J]. Thin Solid Films, 639, 98-106(2017). http://www.sciencedirect.com/science/article/pii/S0040609017306235

    [25] Wu Y Z, Chen C, Liu Y X et al. Fast fabrication of a self-cleaning coating constructed with scallion-like ZnO using a perfect colloidal monolayer enabled by a predictive self-assembly method[J]. Journal of Materials Chemistry A, 5, 5943-5951(2017).

    [26] Luo C L, Yang R X, Yan W G et al. Rapid fabrication of large area binary polystyrene colloidal crystals[J]. Superlattices and Microstructures, 95, 33-37(2016).

    [27] Cao X H, Yin Z Y, Zhang H. Three-dimensional graphene materials: preparation, structures and application in supercapacitors[J]. Energy & Environmental Science, 7, 1850-1865(2014). http://www.ingentaconnect.com/content/rsoc/17545692/2014/00000007/00000006/art00008

    [28] Zhao Y J, Xie Z Y, Gu H C et al. Bio-inspired variable structural color materials[J]. Chemical Society Reviews, 41, 3297-3317(2012).

    [29] Wang J X, Fan Q B, Zhang H et al. Research progress in plasmonic structural colors[J]. Opto-Electronic Engineering, 44, 23-33, 123(2017).

    [30] Ding F, Yang Y Q, Deshpande R A et al. A review of gap-surface plasmon metasurfaces: fundamentals and applications[J]. Nanophotonics, 7, 1129-1156(2018).

    [31] Ellenbogen T, Seo K, Crozier K B. Chromatic plasmonic polarizers for active visible color filtering and polarimetry[J]. Nano Letters, 12, 1026-1031(2012).

    [32] Nho H W, Yoon T H. Structural colour of unary and binary colloidal crystals probed by scanning transmission X-ray microscopy and optical microscopy[J]. Scientific Reports, 7, 12424(2017).

    [33] Wang L C. Ng R J H, Dinachali S S, et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly[J]. ACS Photonics, 3, 627-633(2016).

    [34] Park C, Koh K, Jeong U. Structural color painting by rubbing particle powder[J]. Scientific Reports, 5, 8340(2015).

    [35] Zhang L J, Xiong Z, Shan L et al. Layer-by-layer approach to (2+1)D photonic crystal superlattice with enhanced crystalline integrity[J]. Small, 11, 4910-4921(2015).

    [36] Nam H, Song K, Ha D et al. Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors[J]. Scientific Reports, 6, 30885(2016).

    [37] Lee S Y, Kim H, Kim S H et al. Uniform coating of self-assembled noniridescent colloidal nanostructures using the Marangoni effect and polymers[J]. Physical Review Applied, 10, 054003(2018).

    [38] Jiang H, Sheida A L, Shahbazbegian H et al. Molding inkjetted silver on nanostructured surfaces for high-throughput structural color printing[J]. ACS Nano, 10, 10544-10554(2016). http://europepmc.org/abstract/MED/27934077

    [39] Umh H N, Yu S, Kim Y H et al. Tuning the structural color of a 2D photonic crystal using a bowl-like nanostructure[J]. ACS Applied Materials & Interfaces, 8, 15802-15808(2016).

    [40] Meng Z P, Wu S L, Tang B T et al. Structurally colored polymer films with narrow stop band, high angle-dependence and good mechanical robustness for trademark anti-counterfeiting[J]. Nanoscale, 10, 14755-14762(2018).

    [41] Bai L, Mai V C, Lim Y et al. Large-scale noniridescent structural color printing enabled by infiltration-driven nonequilibrium colloidal assembly[J]. Advanced Materials, 30, 1705667(2018).

    [42] Wu S L, Liu B Q, Su X et al. Structural color patterns on paper fabricated by inkjet printer and their application in anticounterfeiting[J]. The Journal of Physical Chemistry Letters, 8, 2835-2841(2017).

    [43] Lee H S, Shim T S, Hwang H et al. Colloidal photonic crystals toward structural color palettes for security materials[J]. Chemistry of Materials, 25, 2684-2690(2013).

    [44] Keller K, Yakovlev A V, Grachova E V et al. Inkjet printing of multicolor daylight visible opal holography[J]. Advanced Functional Materials, 28, 1706903(2018).

    [45] Stelling C, Bernhardt C, Retsch M. Subwavelength etched colloidal monolayers: a model system for tunable antireflective coatings[J]. Macromolecular Chemistry and Physics, 216, 1682-1688(2015).

    [46] Bouabdellaoui M, Checcucci S, Wood T et al. Self-assembled antireflection coatings for light trapping based on SiGe random metasurfaces[J]. Physical Review Materials, 2, 035203(2018).

    [47] Sanchez-Sobrado O, Mendes M J, Haque S et al. Colloidal-lithographed TiO2 photonic nanostructures for solar cell light trapping[J]. Journal of Materials Chemistry C, 5, 6852-6861(2017).

    [48] Zhou L, Tan Y L, Ji D X et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2, e1501227(2016).

    [49] Wang B M, Gao T C, Leu P W. Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays[J]. Nano Energy, 19, 471-475(2016).

    [50] Shen X X, Cai L Z, Dong G Y et al. Impact of structure design of photonic crystals on LED light extraction efficiency[J]. Chinese Journal of Lasers, 41, s106006(2014).

    [51] Li X H, Zhu P F, Liu G Y et al. Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays[J]. Journal of Display Technology, 9, 324-332(2013).

    [52] Li J Z, Abolghasemi L E, Herman P R et al. Fabry-Perot etalons using colloidal photonic crystal mirrors[J]. Optics Letters, 31, 3591-3593(2006). http://www.opticsinfobase.org/ol/abstract.cfm?id=119050

    [53] Zhao F, Zhu M W, Zhan P. Microlens arrays prepared via colloidal microsphere templating[J]. Chinese Optics Letters, 8, 508-511(2010). http://www.opticsjournal.net/Articles/Abstract?aid=OJ100511000244rXt1w4

    [54] Wang F, Wang Y W, Fu L P et al. Preparation and absorption characteristics of highly ordered Au nanoparticle array[J]. Acta Optica Sinica, 33, s216002(2013).

    [55] Wang P, Yu X C, Zhu Y C et al. Batch fabrication of broadband metallic planar microlenses and their arrays combining nanosphere self-assembly with conventional photolithography[J]. Nanoscale Research Letters, 12, 388(2017).

    [56] Furumi S, Fudouzi H, Miyazaki H T et al. Flexible polymer colloidal-crystal lasers with a light-emitting planar defect[J]. Advanced Materials, 19, 2067-2072(2007). http://onlinelibrary.wiley.com/doi/10.1002/adma.200602855/full

    [57] Wang M, Zou C, Sun J et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity[J]. Advanced Functional Materials, 27, 1702261(2017).

    [58] Kashiri M, Asgari A. Modeling of carrier dynamics in InGaAs/GaAs self-assembled quantum dot lasers[J]. Applied Optics, 55, 2042-2048(2016).

    [59] Ma S Z, Feng W L, Peng Z Q et al. Carbon monoxide gas sensor based on CuO/PANI coated photonic crystal fiber[J]. Laser & Optoelectronics Progress, 56, 050603(2019).

    [60] Dong Z H, Liu Y, Qin Y Y et al. Fabrication of fiber SERS probes by laser-induced self-assembly method in a meniscus and its applications in trace detection of pesticide residues[J]. Chinese Journal of Lasers, 45, 0804009(2018).

    [61] Li J H, Pei L, Wang J S et al. Temperature and magnetic field sensor based on photonic crystal fiber and surface plasmon resonance[J]. Chinese Journal of Lasers, 46, 0210002(2019).

    [62] Pan C, Zhou J P, Ni H B. Colloidal photonic crystal modified optical fiber and relative humidity detection application[J]. Opto-Electronic Engineering, 45, 180168(2018).

    [63] Tong K, Dang P, Wang M T et al. Enhancement of sensitivity of photonic crystal fiber surface plasmon resonance biosensor using TiO2 film[J]. Chinese Journal of Lasers, 45, 0610002(2018).

    [64] Yu X D, Shi L, Han D Z et al. High quality factor metallodielectric hybrid plasmonic-photonic crystals[J]. Advanced Functional Materials, 20, 1910-1916(2010). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201000135/pdf

    [65] Narasimhan V, Siddique R H, Lee J O et al. Multifunctional biophotonic nanostructures inspired by the longtail glasswing butterfly for medical devices[J]. Nature Nanotechnology, 13, 512-519(2018).

    [66] Zhou H W, Liu J S, Liu H T et al. Compact dual-fiber surface-enhanced Raman scattering sensor with monolayer gold nanoparticles self-assembled on optical fiber[J]. Applied Optics, 57, 7931-7937(2018).

    [67] Sadegh N, Khadem H, Tavassoli S H. High Raman-to-fluorescence ratio of Rhodamine 6G excited with 532 nm laser wavelength using a closely packed, self-assembled monolayer of silver nanoparticles[J]. Applied Optics, 55, 6125-6129(2016).

    [68] Yuan Y, Abuhaimed G N, Liu Q K et al. Self-assembled nematic colloidal motors powered by light[J]. Nature Communications, 9, 5040(2018).

    Hongyang Xie, Xiaochang Yu, Qigan Gao, Yang Su, Zixiang Sun, Yiting Yu. Self-Assembled Colloidal Crystals in Field of Micro-Nano Optics[J]. Laser & Optoelectronics Progress, 2019, 56(23): 230001
    Download Citation