• High Power Laser Science and Engineering
  • Vol. 9, Issue 1, 010000e2 (2021)
Yan-Jun Gu1、2、* and Sergei V. Bulanov1、3
Author Affiliations
  • 1Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech Republic
  • 2Institute of Laser Engineering, Osaka University, Osaka565-0871, Japan
  • 3Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Kizugawa-shi, Kyoto 619-0215, Japan
  • show less
    DOI: 10.1017/hpl.2020.45 Cite this Article Set citation alerts
    Yan-Jun Gu, Sergei V. Bulanov. Magnetic field annihilation and charged particle acceleration in ultra-relativistic laser plasmas[J]. High Power Laser Science and Engineering, 2021, 9(1): 010000e2 Copy Citation Text show less

    Abstract

    Magnetic reconnection driven by laser plasma interactions attracts great interests in the recent decades. Motivated by the rapid development of the laser technology, the ultra strong magnetic field generated by the laser-plasma accelerated electrons provides unique environment to investigate the relativistic magnetic field annihilation and reconnection. It opens a new way for understanding relativistic regimes of fast magnetic field dissipation particularly in space plasmas, where the large scale magnetic field energy is converted to the energy of the nonthermal charged particles. Here we review the recent results in relativistic magnetic reconnection based on the laser and collisionless plasma interactions. The basic mechanism and the theoretical model are discussed. Several proposed experimental setups for relativistic reconnection research are presented.
    $$\begin{align}{j}_{rel}= enc\end{align}$$((1))

    View in Article

    $$\begin{align}B=4\pi enl.\end{align}$$((2))

    View in Article

    $$\begin{align}\frac{B^2}{4\pi {nm}_e{c}^2}>1.\end{align}$$((3))

    View in Article

    $$\begin{align}\frac{1}{c^2}{\partial}_{tt}{A}_z-{\partial}_{xx}{A}_z&=\frac{4\pi }{c}{j}_z+\frac{1}{c^2}{A}_z\left(x,t=0\right){\delta}^{\prime}(t)\nonumber\\&\quad+\frac{1}{c^2}{\partial}_t{A}_z\left(x,t=0\right)\delta (t).\end{align}$$((4))

    View in Article

    $$\begin{align}{j}_z=\sum \limits_{j=e,p}{e}_j^2{n}_j\left(x,t\right)\frac{A_z}{{m}_j^2{c}^4+{e}_j^2{A}_z^2{c}^2},\end{align}$$((5))

    View in Article

    $$\begin{align}{E}_z={B}_0{J}_0\left[{\omega}_{pe}\sqrt{t^2-{\left(x/c\right)}^2}\right]\theta \left( ct-|x|\right),\end{align}$$((6))

    View in Article

    $$\begin{align}{p}_z={\frac{eB_0t}{\omega_{pe}}}\ {}_1F_2\left(\left\{\frac{1}{2}\right\},\left\{1,\frac{3}{2}\right\},-\frac{1}{4}{\omega}_{pe}^2{t}^2\right).\end{align}$$((7))

    View in Article

    $$\begin{align}{p}_z=-{eB}_0\left(t-|x|/c\right).\end{align}$$((8))

    View in Article

    $$\begin{align}\nabla \times \mathbf{E}=-\frac{1}{c}{\partial}_t\mathbf{B},\end{align}$$((9))

    View in Article

    $$\begin{align}{E}_z=-\frac{1}{c}{\partial}_t{A}_z.\end{align}$$((10))

    View in Article

    $$\begin{align}\mathbf{j}={I}_0\delta (x){\mathbf{e}}_z={n}_0 lc\delta (x){\mathbf{e}}_z\sum \limits_{j=e,i}{e}_j\frac{p_{j,0}}{\sqrt{m_j^2{c}^2+{p}_{0,j}^2}}.\end{align}$$((11))

    View in Article

    $$\begin{align}&{c}^2{\partial}_{tt}a-{\partial}_{xx}a=-2{\omega}_{0e}\delta (x)\notag\\&\quad\times{}\left[\frac{a+{\pi}_e}{\sqrt{1+{\left(a+{\pi}_e\right)}^2}}+\mu \frac{a-{\pi}_i}{\sqrt{1+{\mu}^2{\left(a-{\pi}_i\right)}^2}}\right]\notag\\&\quad{}+\frac{2e}{m_e{c}^2}\left({E}_w+{B}_0\right){\delta}^{\prime }(t)+\frac{2e}{m_e}{E}_w\delta (t),\end{align}$$((12))

    View in Article

    $$\begin{align}{\omega}_{0e}=\frac{2\pi {n}_0{e}^2l}{m_ec},\end{align}$$((13))

    View in Article

    $$\begin{align}&a\left(x,t\right)=\notag\\&\quad{}-{\omega}_{0e}{\int}_0^{t-\mid x\mid /c}\left\{\frac{a\left(0,{t}^{\prime}\right)+{\pi}_e}{\sqrt{1+{\left[a\left(0,{t}^{\prime}\right)+{\pi}_e\right]}^2}}\right.\notag\\&\quad{}\!\left.+\mu \frac{a\left(0,{t}^{\prime}\right)-{\pi}_i}{\sqrt{1+{\mu}^2{\left[a\left(0,{t}^{\prime}\right)-{\pi}_i\right]}^2}}\right\}\hbox{d}{t}^{\prime}\notag\\&\quad{}+\frac{2\pi {eI}_0}{m_e{c}^2}[\mid\! x\!\mid +\theta ( ct-|x|)( ct-|x|)]\notag\\&\quad{}-\frac{eE_w}{m_e{c}^3}\left[\left( ct+x\right)\theta\! \left( ct+x\right)+\left( ct-x\right)\theta\! \left( ct-x\right)\right].\end{align}$$((14))

    View in Article

    $$\begin{align}&{\int}_0^a\left(0,t\right)\left[\frac{a^{\prime }+{\pi}_e}{\sqrt{1+{\left({a}^{\prime }+{\pi}_e\right)}^2}}+\mu \frac{a^{\prime }-{\pi}_i}{\sqrt{1+{\mu}^2{\left({a}^{\prime }-{\pi}_i\right)}^2}}\right.\notag\\&\quad{}{\left.-\frac{2\pi {eI}_0}{m_e{c}^2{\omega}_{0e}}-\frac{2{eE}_w}{m_e{c}^2{\omega}_{0e}}\right]}^{-1}\hbox{d}{a}^{\prime }=-{\omega}_{0e}t.\end{align}$$((15))

    View in Article

    $$\begin{align}a\left(0,t\right)\approx -\frac{et}{m_ec}\left[{E}_w-\frac{\pi }{c}\left(4{en}_0 lc-{I}_0\right)\right].\end{align}$$((16))

    View in Article

    $$\begin{align}{p}_z\left(0,t\right)\approx - et\left[{E}_w-\frac{\pi }{c}\left(4{en}_0 lc-{I}_0\right)\right].\end{align}$$((17))

    View in Article

    $$\begin{align}{W} a=\delta (x)J,\end{align}$$((18))

    View in Article

    $$\begin{align}{W} \varphi =\delta (x)R,\end{align}$$((19))

    View in Article

    $$\begin{align}J=4\pi \sum \limits_{j=e,i}{e}_j{n}_j{lv}_{z,j}/{m}_j{c}^2\end{align}$$((20))

    View in Article

    $$\begin{align}R=4\pi \sum \limits_{j=e,i}{e}_j{n}_jl/{m}_j{c}^2\end{align}$$((21))

    View in Article

    $$\begin{align}\frac{\hbox{d}^2{a}^{(1)}}{\hbox{d}x^2}-{Q}^2{a}^{(1)}=\delta (x)\left({J}_a{a}^{(1)}+{J}_{\varphi }{\varphi}^{(1)}\right),\end{align}$$((22))

    View in Article

    $$\begin{align}\frac{\hbox{d}^2{\varphi}^{(1)}}{\hbox{d}x^2}-{Q}^2{\varphi}^{(1)}=\delta (x)\left({R}_a{a}^{(1)}+{R}_{\varphi }{\varphi}^{(1)}\right),\end{align}$$((23))

    View in Article

    $$\begin{align}Q=\sqrt{k^2-{\omega}^2/{c}^2}.\end{align}$$((24))

    View in Article

    $$\begin{align}{a}^{(1)}(x)=-\frac{\exp \left(-Q|x|\right)}{2Q}\left[{J}_a{a}^{(1)}(0)+{J}_{\varphi }{\varphi}^{(1)}(0)\right],\end{align}$$((25))

    View in Article

    $$\begin{align}{\varphi}^{(1)}(x)=-\frac{\exp \left(-Q|x|\right)}{2Q}\left[{R}_a{a}^{(1)}(0)+{R}_{\varphi }{\varphi}^{(1)}(0)\right].\end{align}$$((26))

    View in Article

    $$\begin{align}1+\frac{J_a+{R}_{\varphi }}{2Q}+\frac{J_a{R}_{\varphi }-{R}_a{J}_{\varphi }}{4{Q}^2}=0.\end{align}$$((27))

    View in Article

    $$\begin{align}{J}_a=\frac{2{\omega}_{0e}}{c}\left(\frac{1}{\gamma^{(0)3}}+\mu +\frac{k^2{c}^2}{\omega^2{\gamma}^{(0)}}{\beta}^{(0)}\right),\end{align}$$((28))

    View in Article

    $$\begin{align}{J}_{\varphi }=-\frac{2{\omega}_{0e}}{c}\frac{k^2{c}^2}{\omega^2{\gamma}^{(0)}}{\beta}^{(0)},\end{align}$$((29))

    View in Article

    $$\begin{align}{R}_a=\frac{2{\omega}_{0e}}{c}\frac{k^2{c}^2}{\omega^2{\gamma}^{(0)}}{\beta}^{(0)},\end{align}$$((30))

    View in Article

    $$\begin{align}{R}_{\varphi }=-\frac{2{\omega}_{0e}}{c}\frac{k^2{c}^2}{\omega^2}\left(\frac{1}{\gamma^{(0)}}+\mu \right),\end{align}$$((31))

    View in Article

    $$\begin{align}&{W}^2\left[1+\frac{\omega_{0e}}{Qc}\left(\frac{1}{\gamma^{(0)3}}+\mu \right)\right]+W\frac{\omega_{0e}}{Qc}\left[\frac{\beta^{(0)2}}{\gamma^{(0)2}}\right.\notag\\&\quad{}\left.-\frac{1}{\gamma^{(0)}}-\mu -\frac{\omega_{0e}}{Qc}\left(\frac{1}{\gamma^{(0)3}}+\mu \right)\left(\frac{1}{\gamma^{(0)}}+\mu \right)\right]\notag\\&\quad{}-{\left(\frac{\omega_{0e}}{Qc}\right)}^2\frac{{\mu \beta}^{(0)2}}{\gamma^{(0)2}}=0,\end{align}$$((32))

    View in Article

    ((33))

    View in Article

    ((34))

    View in Article

    $$\begin{align}\mathbf{j}&={I}_0f\left(x,t\right)\delta (y){\mathbf{e}}_z,\notag\\f\left(x,t\right)&=1-\theta \left[x(t)-|x|\right].\end{align}$$((35))

    View in Article

    $$\begin{align}{\partial}_{xx}a+{\partial}_{yy}a-{c}^{-2}{\partial}_{tt}a=-\frac{\omega_{0e}}{c}{I}_0f\left(x,t\right)\delta (y)\end{align}$$((36))

    View in Article

    $$\begin{align}&a\left(t=0\right)=-\frac{\omega_{0e}}{c}\mid y\mid,&{\partial}_ta\left(t=0\right)=0.\end{align}$$((37))

    View in Article

    $$\begin{align}x(t)=\pm \beta ct,\end{align}$$((38))

    View in Article

    $$\begin{align}&{E}_z\left(x,y,t\right)=\frac{I_0\beta }{2c\sqrt{1-{\beta}^2}}\notag\\&\quad{}\times \ln \left[\frac{\left({t}_{+}+\sqrt{t^2-{r}^2/{c}^2}\right)\left({t}_{-}+\sqrt{t^2-{r}^2/{c}^2}\right)}{\left({t}_{+}-\sqrt{t^2-{r}^2/{c}^2}\right)\left({t}_{-}-\sqrt{t^2-{r}^2/{c}^2}\right)}\right],\end{align}$$((39))

    View in Article

    $$\begin{align}{t}_{\pm }=\frac{t\pm x\beta /c}{\sqrt{1-{\beta}^2}}\end{align}$$((40))

    View in Article

    $$\begin{align}&{B}_y\left(x,y,t\right)=\frac{I_0}{2c\sqrt{1-{\beta}^2}}\notag\\&\quad{}\times \ln \left[\frac{\left({t}_{+}+\sqrt{t^2-{r}^2/{c}^2}\right)\left({t}_{-}-\sqrt{t^2-{r}^2/{c}^2}\right)}{\left({t}_{+}-\sqrt{t^2-{r}^2/{c}^2}\right)\left({t}_{-}+\sqrt{t^2-{r}^2/{c}^2}\right)}\right].\end{align}$$((41))

    View in Article

    $$\begin{align}{E}_z\left(r=0,t\right)=\frac{I_0\beta }{c\sqrt{1-{\beta}^2}}\ln \left(\frac{1+\sqrt{1-{\beta}^2}}{1-\sqrt{1-{\beta}^2}}\right).\end{align}$$((42))

    View in Article

    $$\begin{align}{E}_z\left(r=0,t\right)\approx \frac{2{I}_0\beta }{c}\ln \left(\frac{2}{\beta}\right).\end{align}$$((43))

    View in Article

    $$\begin{align}{B}_y\left(r=0,t\right)\approx \frac{4{I}_0}{c\beta t}x.\end{align}$$((44))

    View in Article

    $$\begin{align}{A}_z\left(x,y,t\right)\approx -\frac{1}{\pi }{B}_0\beta ct+\frac{B_0}{\pi \beta ct}\left({x}^2-{y}^2\right).\end{align}$$((45))

    View in Article

    $$\begin{align}\mathbf{E}+\frac{\mathbf{u}\times \mathbf{B}}{c}=0,\end{align}$$((46))

    View in Article

    $$\begin{align}{n}_e{m}_e{\partial}_t\mathbf{u}=\frac{\mathbf{j}\times \mathbf{B}}{c}-\nabla P,\end{align}$$((47))

    View in Article

    $$\begin{align}\mathbf{E}=-\frac{\nabla P}{en_e}.\end{align}$$((48))

    View in Article

    $$\begin{align}{\partial}_t\mathbf{B}=-c\frac{\nabla {n}_e\times \nabla P}{en_e^2}.\end{align}$$((49))

    View in Article

    $$\begin{align}P={n}_e{k}_B{T}_e,\end{align}$$((50))

    View in Article

    $$\begin{align}{\partial}_t\mathbf{B}=-\frac{ck_B}{en_e}\left(\nabla {n}_e\times \nabla {T}_e\right),\end{align}$$((51))

    View in Article

    $$\begin{align}e{\phi}_{static}={\varepsilon}_{pond},\end{align}$$((52))

    View in Article

    $$\begin{align}\pi {n}_e{e}^2{R}_{ch}^2={a}_{ch}{m}_e{c}^2,\end{align}$$((53))

    View in Article

    $$\begin{align}{R}_{ch}=\sqrt{\frac{a_{ch}{n}_c}{n_e}}\frac{\lambda }{\pi },\end{align}$$((54))

    View in Article

    $$\begin{align}{a}_{ch}={\left(\frac{2}{K}\frac{\mathcal{P}}{{\mathcal{P}}_c}\frac{n_e}{n_c}\right)}^{1/3},\end{align}$$((55))

    View in Article

    $$\begin{align}{E}_x\left(\zeta, r\right)=-\frac{2{\pi}^2{k}_p{\phi}_L(r)}{4{\pi}^2-{k}_p^2{\left(c{\tau}_L\right)}^2}\times \left[\sin {k}_p\left(c{\tau}_L-\zeta \right)+\sin {k}_p\zeta \right],\end{align}$$((56))

    View in Article

    $$\begin{align}\nabla \times \mathbf{B}=\frac{4\pi }{c}\mathbf{j}+\frac{1}{c}{\partial}_t\mathbf{E},\end{align}$$((57))

    View in Article

    $$\begin{align}\mid \mathbf{B}\mid =4\pi {n}_e{eR}_{ch}.\end{align}$$((58))

    View in Article

    $$\begin{align}{E}_x=\frac{m_e{c}^2}{2\pi \lambda e}{\left(\frac{\omega_{pe}}{\omega_0}\right)}^{2/3}{\left(\frac{\mathcal{P}}{{\mathcal{P}}_c}\right)}^{1/6}.\end{align}$$((59))

    View in Article

    $$\begin{align}<{\varepsilon}_e>=\frac{\int {\varepsilon}_e\left(x,y\right)f\left(x,y\right) \hbox{d}x\hbox{d}y}{\int f\left(x,y\right) \hbox{d}x\hbox{d}y},\end{align}$$((60))

    View in Article

    $$\begin{align}\frac{E_L^2}{4\pi }c{\tau}_L={n}_e{m}_e{c}^2\frac{a_{ch}^2}{2}{l}_{dp},\end{align}$$((61))

    View in Article

    $$\begin{align}{l}_{dp}=\frac{2c{\tau}_L}{a_0^2}{\left(\frac{2}{K}\frac{\mathcal{P}}{{\mathcal{P}}_c}\frac{\omega_0}{\omega_{pe}}\right)}^{2/3}.\end{align}$$((62))

    View in Article

    $$\begin{align}{R}_{ch}={\left(\frac{2}{K}\frac{\mathcal{P}}{{\mathcal{P}}_c}\right)}^{1/6}{\left(\frac{n_c}{n_e}\right)}^{1/3}\frac{\lambda }{\pi }.\end{align}$$((63))

    View in Article

    $$\begin{align}\frac{\hbox{d}R_{ch}}{R_{ch}}+\frac{\lambda }{3\pi}\frac{v_g}{n_e}\frac{\partial {n}_e}{\partial x} \hbox{d}t=0,\end{align}$$((64))

    View in Article

    $$\begin{align}\oint \mathbf{B}\cdot \hbox{d}\mathbf{r}=\frac{4\pi }{c}\int \mathbf{j}\cdot \hbox{d}\mathbf{S},\end{align}$$((65))

    View in Article

    $$\begin{align}\mathbf{B}\left(x,y,z\right)=\mathbf{B}\left(x,y+d,z\right),\end{align}$$((66))

    View in Article

    $$\begin{align}\mathbf{B}\left(x,{y}_c+y,z\right)=-\mathbf{B}\left(x,{y}_c-y,z\right).\end{align}$$((67))

    View in Article

    $$\begin{align}B\left(y,z\right)={B}_y-{iB}_z,\end{align}$$((68))

    View in Article

    $$\begin{align}\mid \mathbf{A}\left(y,z\right)\mid =\Re \left\{{B}_0{\zeta}^2/2\right\}.\end{align}$$((69))

    View in Article

    $$\begin{align}\mathbf{E}=-\frac{1}{c}{\partial}_t\mathbf{A}.\end{align}$$((70))

    View in Article

    $$\begin{align}B\left(y,z\right)=\frac{B_0\zeta }{\sqrt{s{(t)}^2-{\zeta}^2}}.\end{align}$$((71))

    View in Article

    $$\begin{align}\mid \mathbf{A}\left(y,z\right)\mid =\Re \left\{{B}_0\sqrt{s{(t)}^2-{\zeta}^2}\right\}.\end{align}$$((72))

    View in Article

    $$\begin{align}E(t)=-\frac{1}{c}\frac{B_0s(t)\dot{s}(t)}{\sqrt{s{(t)}^2-{\zeta}^2}}.\end{align}$$((73))

    View in Article

    $$\begin{align}\frac{B}{r_{cs}}=\frac{4\pi }{c}{n}_{cs} eu,\end{align}$$((74))

    View in Article

    $$\begin{align}\frac{B}{4\pi {en}_{cs}{r}_{cs}}=\frac{u}{c}\le 1.\end{align}$$((75))

    View in Article

    $$\begin{align}\frac{n_e{R}_{ch}}{n_{cs}{r}_{cs}}=\frac{u}{c}\approx 1.\end{align}$$((76))

    View in Article

    $$\begin{align}\frac{n_e{R}_{ch}}{n_{cs}{r}_{cs}}\gg 1,\end{align}$$((77))

    View in Article

    $$\begin{align}{\partial}_tE=4\pi {n}_e ec\left(\frac{R_{ch}}{r_{cs}}-\frac{n_{cs}}{n_e}\right).\end{align}$$((78))

    View in Article

    $$\begin{align}\mathbf{E}={E}_0\hat{\mathbf{x}},\end{align}$$((79))

    View in Article

    $$\begin{align}\mathbf{B}={b}_0\left(-y\hat{\mathbf{z}}-z\hat{\mathbf{y}}\right).\end{align}$$((80))

    View in Article

    $$\begin{align}\frac{\hbox{d}p_x}{\hbox{d}t}={qE}_0+\frac{q}{c}{\left(\mathbf{v}\times \mathbf{B}\right)}_x=q\left[{E}_0+\frac{b_0}{2c}\frac{\hbox{d}\left({z}^2-{y}^2\right)}{\hbox{d}t}\right],\end{align}$$((81))

    View in Article

    $$\begin{align}\frac{\hbox{d}p_y}{\hbox{d}t}=\frac{q}{c}{\left(\mathbf{v}\times \mathbf{B}\right)}_y=q\frac{b_0}{c}y\frac{\hbox{d}x}{\hbox{d}t},\end{align}$$((82))

    View in Article

    $$\begin{align}\frac{\hbox{d}p_z}{\hbox{d}t}=\frac{q}{c}{\left(\mathbf{v}\times \mathbf{B}\right)}_z=-q\frac{b_0}{c}z\frac{\hbox{d}x}{\hbox{d}t}.\end{align}$$((83))

    View in Article

    $$\begin{align}{p}_x=q\left\{{E}_0t+\frac{b_0}{2c}\left[\left({z}^2-{z}_0^2\right)-\left({y}^2-{y}_0^2\right)\right]\right\}.\end{align}$$((84))

    View in Article

    $$\begin{align}R=\frac{cp}{e\mid B\mid }=\frac{cp}{qb_0{r}_{cs}}.\end{align}$$((85))

    View in Article

    $$\begin{align}cp={qE}_0{r}_{cs},\end{align}$$((86))

    View in Article

    $$\begin{align}R={E}_0/{b}_0,\end{align}$$((87))

    View in Article

    $$\begin{align}T=R/c={E}_0/{cb}_0.\end{align}$$((88))

    View in Article

    $$\begin{align}x(t)= ct,\end{align}$$((89))

    View in Article

    $$\begin{align}{p}_x=\gamma {mv}_x=\frac{\varepsilon \dot{\varepsilon}}{qE_0{c}^2}.\end{align}$$((90))

    View in Article

    $$\begin{align}\frac{\varepsilon \dot{\varepsilon}}{qE_0{c}^2}=q\left\{{E}_0t+\frac{b_0}{2c}\left[\left({z}^2-{z}_0^2\right)-\left({y}^2-{y}_0^2\right)\right]\right\}.\end{align}$$((91))

    View in Article

    $$\begin{align}\varepsilon (t)={\left({\varepsilon}_{t=0}^2+{q}^2{E}_0^2{c}^2{t}^2\right)}^{1/2}.\end{align}$$((92))

    View in Article

    $$\begin{align}{\ddot{x}}_{\alpha }+{\dot{x}}_{\alpha}\frac{\dot{\varepsilon}}{\varepsilon }={\dot{p}}_{\alpha}\frac{c^2}{\varepsilon },\end{align}$$((93))

    View in Article

    $$\begin{align}\ddot{y}+\dot{y}\frac{\dot{\varepsilon}}{\varepsilon }=-\frac{cb_0}{E_0}\frac{\dot{\varepsilon}}{\varepsilon }y,\end{align}$$((94))

    View in Article

    $$\begin{align}\ddot{z}+\dot{z}\frac{\dot{\varepsilon}}{\varepsilon }=\frac{cb_0}{E_0}\frac{\dot{\varepsilon}}{\varepsilon }z.\end{align}$$((95))

    View in Article

    $$\begin{align}y(t)={y}_0{J}_0\left(\sqrt{\frac{4{b}_0 ct}{E_0}}\right),\end{align}$$((96))

    View in Article

    $$\begin{align}z(t)={z}_0{I}_0\left(\sqrt{\frac{4{b}_0 ct}{E_0}}\right),\end{align}$$((97))

    View in Article

    $$\begin{align}\ddot{y}+\dot{y}\frac{1}{t}=-\frac{B_0}{E_0\beta}\frac{1}{t^2}y,\end{align}$$((98))

    View in Article

    $$\begin{align}\ddot{z}+\dot{z}\frac{1}{t}=-\frac{B_0}{E_0\beta}\frac{1}{t^2}z,\end{align}$$((99))

    View in Article

    $$\begin{align}y(t)={y}_1\cos \left(\sqrt{\frac{B_0}{E_0\beta }}\ln t\right)+{y}_2\sin \left(\sqrt{\frac{B_0}{E_0\beta }}\ln t\right),\end{align}$$((100))

    View in Article

    $$\begin{align}z(t)={z}_1{t}^{\sqrt{\frac{B_0}{E_0\beta }}}+{z}_2{t}^{-\sqrt{\frac{B_0}{E_0\beta }}},\end{align}$$((101))

    View in Article

    $$\begin{align}{E}_{l,m}&={E}_0\frac{w_0}{w(x)}{H}_l\left[\frac{\sqrt{2}y}{w(x)}\right]{H}_m\left[\frac{\sqrt{2}z}{w(x)}\right]\notag\\&\quad \times \exp \left[-\frac{r^2}{w^2(x)}\right]\exp \left[-i\frac{kr^2}{2R(x)}\right]\notag\\&\quad \times \exp \left\{-i\left[ kx-\left(l+m+1\right)\varphi (x)\right]\right\}.\end{align}$$((102))

    View in Article

    $$\begin{align}{E}_{1,0}&={E}_0\frac{w_0}{w(x)}\frac{2\sqrt{2}y}{w(x)}\notag\\&\quad \times \exp \left[-\frac{r^2}{w^2(x)}\right]\exp \left[-i\frac{kr^2}{2R(x)}\right]\notag\\&\quad \times \exp \left\{-i\left[ kx-2\varphi (x)\right]\right\}.\end{align}$$((103))

    View in Article

    $$\begin{align}{\left|{E}_{1,0}\right|}^2=\mid {E}_0^2\mid \frac{8{y}^2}{w_0^2}\exp \left(-\frac{2{r}^2}{w_0^2}\right),\end{align}$$((104))

    View in Article

    Yan-Jun Gu, Sergei V. Bulanov. Magnetic field annihilation and charged particle acceleration in ultra-relativistic laser plasmas[J]. High Power Laser Science and Engineering, 2021, 9(1): 010000e2
    Download Citation