• Chinese Optics Letters
  • Vol. 19, Issue 9, 091204 (2021)
Dong-Ning Wang*
Author Affiliations
  • College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
  • show less
    DOI: 10.3788/COL202119.091204 Cite this Article Set citation alerts
    Dong-Ning Wang. Review of femtosecond laser fabricated optical fiber high temperature sensors [Invited][J]. Chinese Optics Letters, 2021, 19(9): 091204 Copy Citation Text show less
    References

    [1] X. N. Jiang, K. Kim, S. J. Zhang, J. Johnson, G. Salazar. High-temperature piezoelectric sensing. Sensors, 14, 144(2014).

    [2] M. R. Islam, M. M. Ali, M. H. Lai, K. S. Lim, H. Ahmad. Chronology of Fabry–Perot interferometer fiber-optic sensors and their applications: a review. Sensors, 14, 7451(2014).

    [3] C. R. Liao, D. N. Wang. Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing. Photon. Sens., 3, 97(2013).

    [4] S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, H. Ding. Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings. Sensors, 17, 2909(2017).

    [5] J. K. Sahota, G. Neena, D. D. Dhawan. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review. Opt. Eng., 59, 060901(2020).

    [6] G. Brambilla, H. Rutt. Fiber Bragg gratings with enhanced thermal stability. Appl. Phys. Lett., 80, 3259(2002).

    [7] A. Martinez, I. Y. Khrushchev, I. Bennion. Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser. Electron. Lett., 41, 176(2005).

    [8] D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker. Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation. Meas. Sci. Technol., 17, 1009(2006).

    [9] B. Zhang, M. Kahrizi. High-temperature resistance fiber Bragg grating temperature sensor fabrication. IEEE Sens. J., 7, 586(2007).

    [10] J. Canning, M. Stevenson, S. Bandyopadhyay, K. Cook. Extreme silica optical fibre gratings. Sensors, 8, 6448(2008).

    [11] H. Chikn-Bled, K. Chan, A. Gonzalez-Vila, B. Lasri, C. Caucheteur. Bahavior of femtosecond laser induced eccentric fiber Bragg gratings at very high temperatures. Opt. Lett., 41, 4048(2016).

    [12] Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, K. T. V. Grattan. Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses. Opt. Express, 16, 21239(2008).

    [13] Y. H. Li, M. W. Yang, D. N. Wang, T. Sun, K. T. V. Grattan. Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation. Opt. Express, 17, 19785(2009).

    [14] Y. H. Li, M. Yang, C. R. Liao, D. N. Wang, J. Lu, P. X. Lu. “Prestressed fiber Bragg grating with high temperature stability. IEEE J. Lightwave Technol., 29, 1555(2011).

    [15] G. Rego, O. Okhomikov, E. Dianov, V. Sulimov. High-temperature stability of long-period fiber gratings produced using an electric arc. IEEE J. Lightwave Technol., 19, 1574(2001).

    [16] G. Humbert, A. Malki, S. Fevrier, P. Roy, D. Pagnoux. Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber. Opt. Lett., 29, 38(2004).

    [17] Y. Zhu, P. Shum, H. Bay, M. Yan, X. Yu, J. Hu, J. Hao, C. Lu. Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber. Opt. Lett., 30, 367(2005).

    [18] M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, K. Oh. Ultracompact intrinsic micro air-cavity fiber Mach–Zehnder interferometer. IEEE Photon. Technol. Lett, 21, 1027(2009).

    [19] Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, P. Lu. High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer. IEEE Photon. Technol. Lett, 22, 39(2010).

    [20] L. Jiang, J. Yang, S. Wang, B. Li, M. Wang. Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett., 36, 3753(2011).

    [21] T. Y. Hu, Y. Wang, C. R. Liao, D. N. Wang. Miniaturized fiber in-line Mach–Zehnder interferometer based on inner air-cavity for high-temperature sensing. Opt. Lett., 37, 5082(2012).

    [22] H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, E. S. Choi. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer. Opt. Lett., 33, 2455(2008).

    [23] T. Zhu, T. Ke, Y. Rao, K. S. Chiang. Fabry–Perot fiber tip for high temperature measurement. Opt. Commun., 283, 3683(2010).

    [24] W. Ding, Y. Jiang, R. Gao, Y. Liu. High-temperature fiber-optic Fabry–Perot interferometeric sensors. Rev. Sci. Instrum., 86, 055001(2015).

    [25] D. Lee, M. Yang, C. Huang, J. Dai. Optical fiber high-temperature sensor based on dielectric films extrinsic Fabry–Perot cavity. IEEE Photon. Technol. Lett, 26, 2107(2014).

    [26] L. Xu, L. Jiang, S. Wang, B. Li, Y. Lu. High-temperature sensor based on an abrupt-taper Michelson interferometer in single-mode fiber. Appl. Opt., 52, 2038(2013).

    [27] H. Cao, X. Shu. Miniature all-fiber high temperature sensor based on Michelson interferometer formed with a novel core-mismatching fiber joint. IEEE Sens. J., 17, 3341(2017).

    [28] Y. Liu, D. N. Wang. Fiber in-line Michelson interferometer based on inclined narrow slit crossing the fiber core. IEEE Photon. Technol. Lett, 30, 293(2018).

    [29] D. Monzón-Hernández, V. P. Minkovich, J. Villatoro. High-temperature sensing with tapers made of microstructured optical fiber. IEEE Photon. Technol. Lett, 18, 511(2006).

    [30] L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, Y. Chung. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express, 16, 11369(2008).

    [31] G. Coviello, V. Finazzi, J. Vilatoro, V. Pruneri. Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C. Opt. Express, 17, 21551(2009).

    [32] A. V. Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Currea, A. Schulzgen. Optimization of multicore for high-temperature sensing. Opt. Lett., 39, 4812(2014).

    [33] S. C. Warren-Smith, L. V. Nguyen, C. Lang, H. Ebendorff-Heidepriem, T. M. Monro. Temperature sensing up to 1300°C using suspended-core microstructured optical fibers. Opt. Express, 24, 3714(2016).

    [34] A. Othonos, K. Kalli. Fiber Bragg Gratings(1999).

    [35] K. O. Hill, G. Meltz. Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol., 15, 1263(1997).

    [36] G. Brambilla. High temperature fibre Bragg grating thermometer. Electron. Lett., 38, 954(2002).

    [37] D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications. IEEE Photon. Technol. Lett, 16, 2505(2004).

    [38] Y. Zhu, Z. Huang, F. Shen, A. Wang. Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements. Opt. Lett., 30, 711(2005).

    [39] M. Busch, W. Ecke, I. Latka, D. Fischer, R. Wilsch, H. Bartelt. Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications. Meas. Sci. Technol, 20, 115301(2009).

    [40] J. Wang, B. Dong, E. Lally, J. Gong, M. Han, A. Wang. Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry–Perot interferometers. Opt. Lett., 35, 619(2010).

    [41] S. J. Mihailov, D. Grobnic, C. W. Smelser. High-temperature multiparameter sensor based on sapphire fiber Bragg gratings. Opt. Lett., 35, 2810(2010).

    [42] T. Elsmann, T. Habisreuther, A. Garf, M. Rothhardt, H. Bartelt. Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation. Opt. Express, 21, 4591(2013).

    [43] T. Habisreuther, T. Elsmann, Z. Pan, A. Garf, M. Rothhardt, R. Wilsch, M. Schmidt. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Appl. Thermal Eng., 91, 860(2015).

    [44] X. Xu, J. He, C. Liao, K. Yang, K. Guo, C. Li, Y. Zhang, Z. Ouyang, Y. Wang. Sapphire fiber Bragg gratings inscribed with a femtosecond laser line-by-line scanning technique. Opt. Lett., 43, 4562(2018).

    [45] C. Chen, X. Y. Zhang, Y. S. Yu, W. H. Wei, Q. Guo, L. Qin, Y. Q. Ning, L. J. Wang, H. B. Sun. “Femtosecond laser-inscribed high-order Bragg gratings in large-diameter sapphire fibers for high-temperature and strain sensing. IEEE J. Lightwave Technol., 36, 3302(2018).

    [46] S. Jeon, V. Malyarchuk, J. A. Rogers, G. P. Wiederrecht. Fabricating three dimensional nanostructures using two photon lithography in a single exposure step. Opt. Express, 14, 2300(2006).

    [47] B. N. Chichkov, C. Momma, S. Nolte, F. V. Alvensleben, A. Tunnermann. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A, 63, 109(1996).

    [48] S. Maruo, K. Ikuta, H. Korogi. Submicron manipulation tools driven by light in a liquid. Appl. Phys. Lett., 82, 133(2003).

    [49] M. D. Perry, B. C. Strart, P. S. Banks, M. D. Feit, V. Yanovsky, A. M. Rubenchik. Ultrafast-pulse laser machining of dielectric materials. J. Appl. Phys., 85, 6803(1999).

    [50] N. Abdukerim, D. Grobnic, C. Hnatovsky, S. J. Mihailov. High-temperature-stable fiber Bragg gratings with ultra strong cladding modes written using the phase mask technique and an infrared femtosecond laser. Opt. Lett., 45, 443(2020).

    [51] Y. Zhu, H. Mei, T. Zhu, J. Zhang, S. Z. Yin. Dual-wavelength FBG inscribed by femtosecond laser for simultaneous measurement of high temperature and strain. Chin. Opt. Lett., 7, 675(2009).

    [52] K. Itoh, W. Watanable, S. Nolte, C. B. Schaffer. Ultrafast processes for bulk modification of transparent materials. MRS Bull., 31, 620(2006).

    [53] C. W. Smelser, S. J. Mihailov, D. Grobnic. Formation of Type I-IR and Type II-IR laser and a phase mask. Opt. Express, 13, 5377(2005).

    [54] U. C. Paek, C. R. Kurkjian. Calculation of cooling rate and induced stresses in drawing of optical fibers. J. Am. Ceram. Soc., 58, 330(1975).

    [55] S. C. Warren-Smith, E. P. Schartner, L. V. Nguyen, D. E. Otten, Z. Yu, D. G. Lancaster, H. Ebendorff-Heidepriem. Stability of grating-based optical fiber sensors at high temperature. IEEE Sens. J., 19, 2978(2019).

    [56] Z. Yong, C. Zhan, J. Lee, S. Z. Yin. Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser. Opt. Lett., 31, 1794(2006).

    [57] T. T. Yang, X. G. Qiao, Q. Z. Rong, W. J. Bao. Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement. Opt. Laser Technol., 93, 138(2017).

    [58] C. M. Jewart, Q. Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, K. P. Chen. Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing. Opt. Lett., 35, 1443(2010).

    [59] R. Z. Wang, J. H. Si, T. Chen, L. H. Yan, H. J. Cao, X. Pham, X. Hou. Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser. Opt. Express, 25, 23684(2017).

    [60] Y. P. Wang, Z. Li, S. Liu, C. Fu, Z. Li, Z. Zhang, Y. Wang, J. He, Z. Bai, C. R. Liao. Parallel-integrated fiber Bragg gratings inscribed by femtosecond laser point-by-point technology. IEEE J. Lightwave Technol., 37, 2185(2019).

    [61] F. Huang, T. Chen, J. Si, X. Pham, X. Hou. Fiber laser based on a fiber Bragg grating and its application in high-temperature sensing. Opt. Commun., 452, 233(2019).

    [62] Y. Liu, S. L. Qu. Femtosecond laser pulses induced ultra-long-period fiber gratings for simultaneous measurement of high temperature and refractive index. Optik, 124, 1303(2013).

    [63] X. R. Dong, Z. Xie, Y. X. Song, Y. Kai, D. K. Chu, J. A. Duan. High temperature-sensitivity sensor based on long period fiber grating inscribed with femtosecond laser transversal-scanning method. Chin. Opt. Lett., 15, 090602(2017).

    [64] Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, G. H. Cheng. Micro Fabry–Perot interferometers in silica fibers machined by femtosecond laser. Opt. Express, 15, 14123(2007).

    [65] C. Zhen, L. Yuan, G. Hefferman, T. Wei. Ultraweak intrinsic Fabry–Perot cavity array for distributed sensing. Opt. Lett., 40, 320(2015).

    [66] T. Wei, Y. Han, H. L. Tsai, H. Xiao. Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser. Opt. Lett., 33, 536(2008).

    [67] Y. Liu, S. L. Qu, Y. Li. Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown. Opt. Lett., 38, 335(2013).

    [68] P. C. Chen, X. W. Shu. Refractive-index-modified-dot Fabry–Perot fiber probe fabricated by femtosecond laser for high-temperature sensing. Opt. Express, 26, 5292(2018).

    [69] W. Y. Ma, Y. Jiang, H. C. Gao. Miniature all-fiber extrinsic Fabry–Perot interferometric sensor for high pressure sensing under high-temperature conditions. Meas. Sci. Technol., 30, 025104(2019).

    [70] J. Deng, D. N. Wang. Construction of cascaded Fabry–Perot interferometers by four in-fiber mirrors for high-temperature sensing. Opt. Lett., 44, 1289(2019).

    [71] Wang Q. H., Zhang H., D. N. Wang. Cascaded multiple Fabry–Perot interferometers fabricated in no-core fiber with a waveguide for high-temperature sensing. Opt. Lett., 44, 5145(2019).

    [72] X. L. Cui, H. Zhang, D. N. Wang. Parallel structured optical fiber in-line Fabry–Perot interferometers for high temperature sensing. Opt. Lett., 45, 726(2020).

    [73] Y. D. Niu, D. N. Wang, Q. H. Wang, Z. K. Wang, S. Zhang. Cascaded multiple Fabry–Perot interferometers fabricated in multimode fiber with a waveguide. Opt. Fiber Technol., 58, 102306(2020).

    [74] H. Zhang, D. N. Wang, B. M. A. Rahman. Parallel structured fiber in-line multiple Fabry–Perot cavities for high temperature sensing. Sens. Actuators A, 313, 112214(2020).

    [75] M. Wang, Y. Yang, S. Huang, J. Wu, K. Zhao, Y. Li, Z. Peng, R. Zou, H. Lan, P. R. Ohodnicki, P. Lu, M. P. Buric, B. Liu, Q. Yu, K. P. Chan. Multiplexable high-temperature stable and low-loss intrinsic Fabry–Perot in-fiber sensors through nanograting engineering. Opt. Express, 28, 20225(2020).

    [76] H. Gong, D. N. Wang, B. Xu, K. Ni, H. Liu, C. L. Zhao. Miniature and robust optical fiber in-line Mach–Zehnder interferometer based on a hollow ellipsoid. Opt. Lett., 40, 3516(2015).

    [77] C. R. Liao, H. F. Chen, D. N. Wang. Ultra compact optical fiber sensor for refractive index and high temperature measurement. IEEE J. Lightwave Technol., 32, 2531(2014).

    [78] L. Yuan, T. Wei, Q. Han, H. Z. Wang, J. Huang, L. Jiang, H. Xiao. Fiber inline Michelson interferometer fabricated by a femtosecond laser. Opt. Lett., 37, 4489(2012).

    [79] Y. Q. Yu, W. Zhou, J. Ma, S. C. Ruan. High-temperature sensor based on 45° tilted fiber end fabricated by femtosecond laser. IEEE Photon. Technol. Lett, 28, 653(2016).

    [80] T. Elsmann, A. Lorenz, N. S. Yazd, T. Habisreuther, J. Dellith, A. Schwuchow, J. Bierlich, K. Schusteret, M. Rothhardt, L. Kido, H. Bartelt. High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers. Opt. Express, 22, 26825(2014).

    [81] S. Yang, D. Homa, P. Gary, G. Pickrell, A. Wang. Fiber Bragg grating fabricated in micro-single-crystal sapphire fiber. Opt. Lett., 43, 62(2018).

    [82] T. Habisreuther, T. Elsmann, Z. W. Pan, A. Graf, R. Willsch, M. A. Schmidt. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Appl. Thermal Eng., 91, 860(2015).

    CLP Journals

    [1] Jin Li, Yanbo Dou, Lixin Wang, Jinhai Zou, Yu Ding, Hang Wang, Qiujun Ruan, Zhipeng Dong, Zhengqian Luo. New ultrashort pulsewidth measurement technology based on interference jitter and FPGA platform[J]. Chinese Optics Letters, 2022, 20(3): 031404

    Data from CrossRef

    [1] Longfei Zhang, Feng Guan, Long Zhang, Yiguang Jiang. Next generation mid-infrared fiber: fluoroindate glass fiber. Optical Materials Express, 12, 1683(2022).

    Dong-Ning Wang. Review of femtosecond laser fabricated optical fiber high temperature sensors [Invited][J]. Chinese Optics Letters, 2021, 19(9): 091204
    Download Citation