• Chinese Optics Letters
  • Vol. 19, Issue 9, 091204 (2021)
Dong-Ning Wang*
Author Affiliations
  • College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
  • show less
    DOI: 10.3788/COL202119.091204 Cite this Article Set citation alerts
    Dong-Ning Wang, "Review of femtosecond laser fabricated optical fiber high temperature sensors [Invited]," Chin. Opt. Lett. 19, 091204 (2021) Copy Citation Text show less
    References

    [1] X. N. Jiang, K. Kim, S. J. Zhang, J. Johnson, G. Salazar. High-temperature piezoelectric sensing. Sensors, 14, 144(2014).

    [2] M. R. Islam, M. M. Ali, M. H. Lai, K. S. Lim, H. Ahmad. Chronology of Fabry–Perot interferometer fiber-optic sensors and their applications: a review. Sensors, 14, 7451(2014).

    [3] C. R. Liao, D. N. Wang. Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing. Photon. Sens., 3, 97(2013).

    [4] S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, H. Ding. Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings. Sensors, 17, 2909(2017).

    [5] J. K. Sahota, G. Neena, D. D. Dhawan. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review. Opt. Eng., 59, 060901(2020).

    [6] G. Brambilla, H. Rutt. Fiber Bragg gratings with enhanced thermal stability. Appl. Phys. Lett., 80, 3259(2002).

    [7] A. Martinez, I. Y. Khrushchev, I. Bennion. Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser. Electron. Lett., 41, 176(2005).

    [8] D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker. Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation. Meas. Sci. Technol., 17, 1009(2006).

    [9] B. Zhang, M. Kahrizi. High-temperature resistance fiber Bragg grating temperature sensor fabrication. IEEE Sens. J., 7, 586(2007).

    [10] J. Canning, M. Stevenson, S. Bandyopadhyay, K. Cook. Extreme silica optical fibre gratings. Sensors, 8, 6448(2008).

    [11] H. Chikn-Bled, K. Chan, A. Gonzalez-Vila, B. Lasri, C. Caucheteur. Bahavior of femtosecond laser induced eccentric fiber Bragg gratings at very high temperatures. Opt. Lett., 41, 4048(2016).

    [12] Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, K. T. V. Grattan. Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses. Opt. Express, 16, 21239(2008).

    [13] Y. H. Li, M. W. Yang, D. N. Wang, T. Sun, K. T. V. Grattan. Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation. Opt. Express, 17, 19785(2009).

    [14] Y. H. Li, M. Yang, C. R. Liao, D. N. Wang, J. Lu, P. X. Lu. “Prestressed fiber Bragg grating with high temperature stability. IEEE J. Lightwave Technol., 29, 1555(2011).

    [15] G. Rego, O. Okhomikov, E. Dianov, V. Sulimov. High-temperature stability of long-period fiber gratings produced using an electric arc. IEEE J. Lightwave Technol., 19, 1574(2001).

    [16] G. Humbert, A. Malki, S. Fevrier, P. Roy, D. Pagnoux. Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber. Opt. Lett., 29, 38(2004).

    [17] Y. Zhu, P. Shum, H. Bay, M. Yan, X. Yu, J. Hu, J. Hao, C. Lu. Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber. Opt. Lett., 30, 367(2005).

    [18] M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, K. Oh. Ultracompact intrinsic micro air-cavity fiber Mach–Zehnder interferometer. IEEE Photon. Technol. Lett, 21, 1027(2009).

    [19] Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, P. Lu. High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer. IEEE Photon. Technol. Lett, 22, 39(2010).

    [20] L. Jiang, J. Yang, S. Wang, B. Li, M. Wang. Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett., 36, 3753(2011).

    [21] T. Y. Hu, Y. Wang, C. R. Liao, D. N. Wang. Miniaturized fiber in-line Mach–Zehnder interferometer based on inner air-cavity for high-temperature sensing. Opt. Lett., 37, 5082(2012).

    [22] H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, E. S. Choi. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer. Opt. Lett., 33, 2455(2008).

    [23] T. Zhu, T. Ke, Y. Rao, K. S. Chiang. Fabry–Perot fiber tip for high temperature measurement. Opt. Commun., 283, 3683(2010).

    [24] W. Ding, Y. Jiang, R. Gao, Y. Liu. High-temperature fiber-optic Fabry–Perot interferometeric sensors. Rev. Sci. Instrum., 86, 055001(2015).

    [25] D. Lee, M. Yang, C. Huang, J. Dai. Optical fiber high-temperature sensor based on dielectric films extrinsic Fabry–Perot cavity. IEEE Photon. Technol. Lett, 26, 2107(2014).

    [26] L. Xu, L. Jiang, S. Wang, B. Li, Y. Lu. High-temperature sensor based on an abrupt-taper Michelson interferometer in single-mode fiber. Appl. Opt., 52, 2038(2013).

    [27] H. Cao, X. Shu. Miniature all-fiber high temperature sensor based on Michelson interferometer formed with a novel core-mismatching fiber joint. IEEE Sens. J., 17, 3341(2017).

    [28] Y. Liu, D. N. Wang. Fiber in-line Michelson interferometer based on inclined narrow slit crossing the fiber core. IEEE Photon. Technol. Lett, 30, 293(2018).

    [29] D. Monzón-Hernández, V. P. Minkovich, J. Villatoro. High-temperature sensing with tapers made of microstructured optical fiber. IEEE Photon. Technol. Lett, 18, 511(2006).

    [30] L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, Y. Chung. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express, 16, 11369(2008).

    [31] G. Coviello, V. Finazzi, J. Vilatoro, V. Pruneri. Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C. Opt. Express, 17, 21551(2009).

    [32] A. V. Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Currea, A. Schulzgen. Optimization of multicore for high-temperature sensing. Opt. Lett., 39, 4812(2014).

    [33] S. C. Warren-Smith, L. V. Nguyen, C. Lang, H. Ebendorff-Heidepriem, T. M. Monro. Temperature sensing up to 1300°C using suspended-core microstructured optical fibers. Opt. Express, 24, 3714(2016).

    [34] A. Othonos, K. Kalli. Fiber Bragg Gratings(1999).

    [35] K. O. Hill, G. Meltz. Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol., 15, 1263(1997).

    [36] G. Brambilla. High temperature fibre Bragg grating thermometer. Electron. Lett., 38, 954(2002).

    [37] D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications. IEEE Photon. Technol. Lett, 16, 2505(2004).

    [38] Y. Zhu, Z. Huang, F. Shen, A. Wang. Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements. Opt. Lett., 30, 711(2005).

    [39] M. Busch, W. Ecke, I. Latka, D. Fischer, R. Wilsch, H. Bartelt. Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications. Meas. Sci. Technol, 20, 115301(2009).

    [40] J. Wang, B. Dong, E. Lally, J. Gong, M. Han, A. Wang. Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry–Perot interferometers. Opt. Lett., 35, 619(2010).

    [41] S. J. Mihailov, D. Grobnic, C. W. Smelser. High-temperature multiparameter sensor based on sapphire fiber Bragg gratings. Opt. Lett., 35, 2810(2010).

    [42] T. Elsmann, T. Habisreuther, A. Garf, M. Rothhardt, H. Bartelt. Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation. Opt. Express, 21, 4591(2013).

    [43] T. Habisreuther, T. Elsmann, Z. Pan, A. Garf, M. Rothhardt, R. Wilsch, M. Schmidt. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Appl. Thermal Eng., 91, 860(2015).

    [44] X. Xu, J. He, C. Liao, K. Yang, K. Guo, C. Li, Y. Zhang, Z. Ouyang, Y. Wang. Sapphire fiber Bragg gratings inscribed with a femtosecond laser line-by-line scanning technique. Opt. Lett., 43, 4562(2018).

    [45] C. Chen, X. Y. Zhang, Y. S. Yu, W. H. Wei, Q. Guo, L. Qin, Y. Q. Ning, L. J. Wang, H. B. Sun. “Femtosecond laser-inscribed high-order Bragg gratings in large-diameter sapphire fibers for high-temperature and strain sensing. IEEE J. Lightwave Technol., 36, 3302(2018).

    [46] S. Jeon, V. Malyarchuk, J. A. Rogers, G. P. Wiederrecht. Fabricating three dimensional nanostructures using two photon lithography in a single exposure step. Opt. Express, 14, 2300(2006).

    [47] B. N. Chichkov, C. Momma, S. Nolte, F. V. Alvensleben, A. Tunnermann. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A, 63, 109(1996).

    [48] S. Maruo, K. Ikuta, H. Korogi. Submicron manipulation tools driven by light in a liquid. Appl. Phys. Lett., 82, 133(2003).

    [49] M. D. Perry, B. C. Strart, P. S. Banks, M. D. Feit, V. Yanovsky, A. M. Rubenchik. Ultrafast-pulse laser machining of dielectric materials. J. Appl. Phys., 85, 6803(1999).

    [50] N. Abdukerim, D. Grobnic, C. Hnatovsky, S. J. Mihailov. High-temperature-stable fiber Bragg gratings with ultra strong cladding modes written using the phase mask technique and an infrared femtosecond laser. Opt. Lett., 45, 443(2020).

    [51] Y. Zhu, H. Mei, T. Zhu, J. Zhang, S. Z. Yin. Dual-wavelength FBG inscribed by femtosecond laser for simultaneous measurement of high temperature and strain. Chin. Opt. Lett., 7, 675(2009).

    [52] K. Itoh, W. Watanable, S. Nolte, C. B. Schaffer. Ultrafast processes for bulk modification of transparent materials. MRS Bull., 31, 620(2006).

    [53] C. W. Smelser, S. J. Mihailov, D. Grobnic. Formation of Type I-IR and Type II-IR laser and a phase mask. Opt. Express, 13, 5377(2005).

    [54] U. C. Paek, C. R. Kurkjian. Calculation of cooling rate and induced stresses in drawing of optical fibers. J. Am. Ceram. Soc., 58, 330(1975).

    [55] S. C. Warren-Smith, E. P. Schartner, L. V. Nguyen, D. E. Otten, Z. Yu, D. G. Lancaster, H. Ebendorff-Heidepriem. Stability of grating-based optical fiber sensors at high temperature. IEEE Sens. J., 19, 2978(2019).

    [56] Z. Yong, C. Zhan, J. Lee, S. Z. Yin. Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser. Opt. Lett., 31, 1794(2006).

    [57] T. T. Yang, X. G. Qiao, Q. Z. Rong, W. J. Bao. Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement. Opt. Laser Technol., 93, 138(2017).

    [58] C. M. Jewart, Q. Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, K. P. Chen. Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing. Opt. Lett., 35, 1443(2010).

    [59] R. Z. Wang, J. H. Si, T. Chen, L. H. Yan, H. J. Cao, X. Pham, X. Hou. Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser. Opt. Express, 25, 23684(2017).

    [60] Y. P. Wang, Z. Li, S. Liu, C. Fu, Z. Li, Z. Zhang, Y. Wang, J. He, Z. Bai, C. R. Liao. Parallel-integrated fiber Bragg gratings inscribed by femtosecond laser point-by-point technology. IEEE J. Lightwave Technol., 37, 2185(2019).

    [61] F. Huang, T. Chen, J. Si, X. Pham, X. Hou. Fiber laser based on a fiber Bragg grating and its application in high-temperature sensing. Opt. Commun., 452, 233(2019).

    [62] Y. Liu, S. L. Qu. Femtosecond laser pulses induced ultra-long-period fiber gratings for simultaneous measurement of high temperature and refractive index. Optik, 124, 1303(2013).

    [63] X. R. Dong, Z. Xie, Y. X. Song, Y. Kai, D. K. Chu, J. A. Duan. High temperature-sensitivity sensor based on long period fiber grating inscribed with femtosecond laser transversal-scanning method. Chin. Opt. Lett., 15, 090602(2017).

    [64] Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, G. H. Cheng. Micro Fabry–Perot interferometers in silica fibers machined by femtosecond laser. Opt. Express, 15, 14123(2007).

    [65] C. Zhen, L. Yuan, G. Hefferman, T. Wei. Ultraweak intrinsic Fabry–Perot cavity array for distributed sensing. Opt. Lett., 40, 320(2015).

    [66] T. Wei, Y. Han, H. L. Tsai, H. Xiao. Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser. Opt. Lett., 33, 536(2008).

    [67] Y. Liu, S. L. Qu, Y. Li. Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown. Opt. Lett., 38, 335(2013).

    [68] P. C. Chen, X. W. Shu. Refractive-index-modified-dot Fabry–Perot fiber probe fabricated by femtosecond laser for high-temperature sensing. Opt. Express, 26, 5292(2018).

    [69] W. Y. Ma, Y. Jiang, H. C. Gao. Miniature all-fiber extrinsic Fabry–Perot interferometric sensor for high pressure sensing under high-temperature conditions. Meas. Sci. Technol., 30, 025104(2019).

    [70] J. Deng, D. N. Wang. Construction of cascaded Fabry–Perot interferometers by four in-fiber mirrors for high-temperature sensing. Opt. Lett., 44, 1289(2019).

    [71] Wang Q. H., Zhang H., D. N. Wang. Cascaded multiple Fabry–Perot interferometers fabricated in no-core fiber with a waveguide for high-temperature sensing. Opt. Lett., 44, 5145(2019).

    [72] X. L. Cui, H. Zhang, D. N. Wang. Parallel structured optical fiber in-line Fabry–Perot interferometers for high temperature sensing. Opt. Lett., 45, 726(2020).

    [73] Y. D. Niu, D. N. Wang, Q. H. Wang, Z. K. Wang, S. Zhang. Cascaded multiple Fabry–Perot interferometers fabricated in multimode fiber with a waveguide. Opt. Fiber Technol., 58, 102306(2020).

    [74] H. Zhang, D. N. Wang, B. M. A. Rahman. Parallel structured fiber in-line multiple Fabry–Perot cavities for high temperature sensing. Sens. Actuators A, 313, 112214(2020).

    [75] M. Wang, Y. Yang, S. Huang, J. Wu, K. Zhao, Y. Li, Z. Peng, R. Zou, H. Lan, P. R. Ohodnicki, P. Lu, M. P. Buric, B. Liu, Q. Yu, K. P. Chan. Multiplexable high-temperature stable and low-loss intrinsic Fabry–Perot in-fiber sensors through nanograting engineering. Opt. Express, 28, 20225(2020).

    [76] H. Gong, D. N. Wang, B. Xu, K. Ni, H. Liu, C. L. Zhao. Miniature and robust optical fiber in-line Mach–Zehnder interferometer based on a hollow ellipsoid. Opt. Lett., 40, 3516(2015).

    [77] C. R. Liao, H. F. Chen, D. N. Wang. Ultra compact optical fiber sensor for refractive index and high temperature measurement. IEEE J. Lightwave Technol., 32, 2531(2014).

    [78] L. Yuan, T. Wei, Q. Han, H. Z. Wang, J. Huang, L. Jiang, H. Xiao. Fiber inline Michelson interferometer fabricated by a femtosecond laser. Opt. Lett., 37, 4489(2012).

    [79] Y. Q. Yu, W. Zhou, J. Ma, S. C. Ruan. High-temperature sensor based on 45° tilted fiber end fabricated by femtosecond laser. IEEE Photon. Technol. Lett, 28, 653(2016).

    [80] T. Elsmann, A. Lorenz, N. S. Yazd, T. Habisreuther, J. Dellith, A. Schwuchow, J. Bierlich, K. Schusteret, M. Rothhardt, L. Kido, H. Bartelt. High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers. Opt. Express, 22, 26825(2014).

    [81] S. Yang, D. Homa, P. Gary, G. Pickrell, A. Wang. Fiber Bragg grating fabricated in micro-single-crystal sapphire fiber. Opt. Lett., 43, 62(2018).

    [82] T. Habisreuther, T. Elsmann, Z. W. Pan, A. Graf, R. Willsch, M. A. Schmidt. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Appl. Thermal Eng., 91, 860(2015).

    CLP Journals

    [1] Jin Li, Yanbo Dou, Lixin Wang, Jinhai Zou, Yu Ding, Hang Wang, Qiujun Ruan, Zhipeng Dong, Zhengqian Luo, "New ultrashort pulsewidth measurement technology based on interference jitter and FPGA platform," Chin. Opt. Lett. 20, 031404 (2022)

    Data from CrossRef

    [1] Longfei Zhang, Feng Guan, Long Zhang, Yiguang Jiang. Next generation mid-infrared fiber: fluoroindate glass fiber. Optical Materials Express, 12, 1683(2022).

    Dong-Ning Wang, "Review of femtosecond laser fabricated optical fiber high temperature sensors [Invited]," Chin. Opt. Lett. 19, 091204 (2021)
    Download Citation