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The femtosecond laser has been an efficient tool for optical fiber high temperature sensor construction. Here, we review
the progress of optical fiber high temperature sensors based on femtosecond laser fabricated fiber gratings and various
types of fiber in-line interferometers in silica fibers and sapphire fibers.
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1. Introduction

Optical fiber sensors have been developed rapidly in the last few
decades, and more and more applications are emerging. The
main advantages of optical fiber sensors include high sensitivity,
light weight, small volume, anti-corrosion, immunity to electro-
magnetic interference, distributed and remote sensing capabil-
ity, and the suitability for extreme environmentmonitoring such
as high temperature. High temperature sensing has important
applications in energy, iron-steel, aero-engine, defense, and
military industries, which has induced intensive research inter-
ests in recent years[1–5].
Optical fiber high temperature sensors can be realized by dif-

ferent types of optical fiber structures and configurations and
constructed in different types of optical fibers. The most
popular fiber structures used for high temperature sensing are
fiber Bragg grating (FBG)[6–14], long-period fiber grating
(LPFG)[15–17], and fiber interferometers[18–33].
FBG-based optical fiber sensors are simple, compact, highly

flexible, and convenient in use, and can be easily multiplexed
in a series along a single optical fiber, thus achieving simultane-
ous multi-point sensing in a flexible manner. However, they
usually have limited sensitivity (0.01 nm/°C). The FBG is essen-
tially a simple wavelength mirror or filter, usually fabricated by
exposing the optical fiber to ultraviolet (UV) laser light using the
interferometric method or the phase mask technique, which
causes a periodic modulation of the refractive index of the opti-
cal fiber, arising from the fiber’s inherent photosensitivity[34,35].
The FBGs fabricated by use of a UV laser exhibit poor stability in
the high temperature environment, and the grating structure
“washes out” at temperatures close to 700°C[36]. Such a problem
can be overcome by use of femtosecond laser fabricated gratings,
as will be described later.

LPFG-based sensors exhibit higher sensitivity to external per-
turbations than that of FBGs. LPFGs exhibit periodic structures
that couple light from the guided core mode to the cladding
mode at resonant wavelengths satisfying the phase matching
condition. The transmission spectra of LPFGs consist of a series
of attenuation bands centered at the resonant wavelengths,
which are sensitive to grating period, grating length, and envi-
ronmental parameters such as strain, bend, and temperature.
LPFG-based sensors have a relatively large device size (on the
order of centimeters) and a wide 3 dB bandwidth, which leads
to a low measurement resolution. Moreover, the LPFG is sensi-
tive to an external refractive index and bending, thus producing
cross sensitivity.
Optical fiber interferometric high temperature sensors are

featured with high sensitivity, without age decaying or structure
erasing problems faced by FBGs. Different types of interferom-
eter configurations have been developed for high temperature
sensors, such as theMach–Zehnder interferometer (MZI)[18–21],
the Fabry–Perot interferometer (FPI)[22–25], and the Michelson
interferometer (MI)[26-28]. Especially, the fiber in-line interfer-
ometer is a miniature and versatile optical fiber sensing device
that can operate conveniently and in a flexible manner.
Besides the frequently used conventional single-mode

fiber (SMF), multimode fiber (MMF), photonics crystal fiber
(PCF) or microstructured fiber, microfiber, and other specialty
optical fibers are also employed for high temperature measure-
ment[29–33]. As the glass transition temperature of silica is
around 1050°C[37], for higher temperature sensing, the sapphire
fiber has to be used[37–45].
In the past two decades, the femtosecond laser has become a

powerful and flexible tool for optical fiber high temperature sen-
sor fabrication. It can be used for a variety of materials, with
ultrashort processing time, high processing precision, and small
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heat affected zone[46–49]. The femtosecond laser inscribed gra-
tings can effectively avoid the age decaying or structure erasing
problem and exhibit high temperature sustainability. The femto-
second laser can flexibly fabricate different types of optical fiber
in-line interferometers, which highly improves the device com-
pactness and operation convenience. Especially, the femtosec-
ond laser provides an efficient means for processing sapphire
fibers and allows FBGs be inscribed in sapphire fibers, which
effectively supports high temperature sensing beyond 1200°C.
In this paper, we will review the recent progress of femtosec-

ond laser fabricated optical fiber high temperature sensors. The
main interests lie in the sensor device based on femtosecond
laser fabricated fiber gratings and various types of fiber in-line
interferometers in silica fibers and sapphire fibers.

2. Femtosecond Laser Fabricated Fiber Gratings for
High Temperature Sensing

FBGs are usually written by use of either the phase mask method
or point-by-point technique[6,7,10,11,50,51]. The point-by-point
technique is more flexible for FBG resonant wavelength selec-
tion; however, by using the phase mask method, rapid and mas-
sive production can be realized, and the grating quality is
relatively easy to be guaranteed.
The UV laser is typically used to write FBGs, in which the

refractive indexmodulation produced depends on the photosen-
sitivity of the fiber materials and usually has poor sustainability
at high temperatures. The femtosecond laser can produce the
refractive index modulation in almost any kind of transparent
material[52], and the type II FBGs (damage FBGs) produced have
excellent high temperature stability up to the glass transition
temperature, which is likely due to the nonlinear self-focusing
process, where ultrahigh pulse power may affect the glass
structure[53].
Figure 1 demonstrates the structures of type I and type II

FBGs written by the femtosecond laser. Type II FBGs have a

structure with a permanent refractive index change, are much
more stable under high temperatures than type I FBGs, which
refers to the grating formed under normal laser irradiation
intensity, and can be erased at a relatively low temperature.
One of the limitation factors for further enhancing the ther-

mal stability of the FBG is the residual stress that exists in the
optical fiber fabrication process, caused by the mechanical prop-
erty and thermal expansion coefficient differences between the
fiber core and cladding[54]. Such a residual stress can be relaxed
through using a high temperature annealing treatment.
Figure 2 shows a long-term thermal stability test on type II

gratings. It can be observed that the FBGs written in the fibers
with pre-annealing treatment of 1100°C have enhanced thermal
stability, almost unaffected by the thermal exposure to temper-
atures up to 1200°C.
One of the problems of the pre-annealing treatment of fiber is

that the fiber becomes brittle, which creates difficulty in the gra-
ting fabrication. Such a problem can be alleviated to some extent
by introducing compressive residual stress in FBGs through high
temperature annealing followed by a rapid air quenching treat-
ment, which can build up compressive residual stresses in the
optical fiber, similar to the annealing of the glass[14].
Figures 3(a) and 3(b) demonstrate the evolution of the grating

reflectivity and the resonance wavelength, respectively. It can be
observed that the pre-stressed gratings exhibit clearly enhanced
thermal stability, which is almost unaffected by thermal expo-
sure at temperatures up to 1200°C, and there is only a slight fluc-
tuation of the grating strength during the 26 h test.
In a recent investigation, both doped silica fiber and pure

silica fiber were tested at high temperature[55]. It is found that
the pure silica fiber can maintain stability at the temperature
higher than that of the doped silica fiber.
FBGs are also written by femtosecond lasers in theMMF[56,57]

and PCF[58] suspended-core microstructured optical fiber[33] for
multiple parameter measurement at high temperature. By mov-
ing the fiber with a tilt angle, tilted FBGs can be fabricated by the
femtosecond laser and used for high temperature sensing[59].

Fig. 1. Optical microscope images of FBGs inscribed by IR fs lasers[13].
(a) Type I grating; (b) type II grating.

Fig. 2. Change in the reflectivity of the type II-IR FBGs inscribed in normal and
pre-annealed fibers over a 1300 min period at an annealing temperature of
1200°C[12].
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In Ref. [60], parallel structured multiple FBGs within the core of
the SMF are fabricated by use of the femtosecond laser and
point-to-point technique. The whole grating length is 500 μm
and it can be used to realize high temperature sensing up to
1100°C, with a high spatial resolution of the sub-millimeter
scale, which is much better than that of the FBG written by
the UV laser (larger than 1 cm).
Recently, a linear-cavity fiber laser based on an FBG fabri-

cated by a femtosecond laser has been developed and tested
for its high temperature characteristics, such a fiber laser can
operate stably at 1000°C with a temperature sensitivity of
15.9 pm/°C in the range of 300–1000°C[61].
The femtosecond laser inscribed LPFGs are reported in

Refs. [62,63] with a relatively large temperature sensitivity of
more than 100 pm/°C.

3. Optical Fiber In-Line Interferometers for High
Temperature Sensing

Although many optical fiber interferometers can perform high
temperature sensing, fiber in-line interferometers have the
advantages of compact size, flexible arrangement, and con-
venient operation. By use of an efficient femtosecond laser
micromachining technique, various types of fiber in-line

interferometers have been developed and used for high temper-
ature sensing.
Figure 4 shows the schematic examples of the femtosecond

laser fabricated FPI, MZI, and MI suitable for high temperature
monitoring. In Fig. 4(a), part of the fiber cladding and a small
section of the whole fiber core are removed by femtosecond laser
micromachining, and an open air-cavity is created. Part of the
incident light traveling in the fiber core is reflected by the first
end face of the air cavity, and the rest keeps traveling in the air
cavity and is reflected by the second end face of the air cavity
before returning to the fiber core at the first end face position,
thus forming an FPI.
Figure 4(b) is similar to Fig. 4(a), but only a small section of

half of the fiber core is removed, which allows that part of the
incident light to pass through the open air cavity, while the rest
remains traveling in the fiber core; both are recombined at the
air-cavity end and form an MZI.
In Fig. 4(c), a section of the optical fiber, including half of the

fiber core and cladding, is removed. The incident light traveling
in the fiber core is firstly divided into two beams and reflected by
the two fiber end faces, respectively, before recombining in the
fiber core at the first fiber end face position and forming an MI.
The fiber in-line interferometers can be constructed by using

different fibers, fiber structures, and configurations.
Similar to the configuration shown in Fig. 4(a), a fiber in-line

FPI can be constructed by drilling a micro-channel crossing the
fiber core using femtosecond laser [64–66]. Such an FPI can sus-
tain the high temperature up to 1100°C.When themicrochannel
is near the end of the SMF, a three wave FPI can be formed and
used for high temperature sensing up to 1000°C[67]. An FPI is
constructed by use of a femtosecond laser inscribed refractive
index modified dot in the fiber core near the end of the SMF,
which has the temperature sensitivity of 13.9 pm/°C and
18.6 pm/°C in the range of 100°C–500°C and 500°C–1000°C,
respectively[68]. By fusion splicing an SMF and a no-core fiber
(NCF) to create an inner air cavity, followed by using a

Fig. 3. Evolutions of (a) the reflection and (b) the resonant wavelength of the
pre-stressed FBGs (fabricated using 550 μJ pulse energy) over 26 h at the
annealing temperature of 1200°C.

Fig. 4. Schematics of the femtosecond laser fabricated fiber in-line interfer-
ometers. (a) FPI, (b) MZI, and (c) MI.
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femtosecond laser for precision fiber cleaving to form a thin dia-
gram, a miniature FPI sensor is produced for high temperature
and high pressure sensing[69].
Recently, in-fiber reflection mirrors have been inscribed in

SMFs, NCFs, and MMFs by a femtosecond laser, which can
be flexibly arranged to form cascaded FPIs in a series or a parallel
structure with precisely controlled FP cavity length[70–74], with
high temperature sustainability up to 1100°C. Moreover, fiber
gratings and FPIs can be combined by inscribing nanogratings
in the fiber core and be used as in-fiber reflection mirrors to cre-
ate an intrinsic FPIs for high temperature sensing up to
1000°C[75].
As shown in Fig. 4(b), by removing part of the fiber core and

cladding using femtosecond laser micromachining, an MZI is
formed and used for high temperature monitoring up to
1100°C[19]. The system is compact, reliable, and can detect
the temperature at precise locations. By combing femtosecond
laser micromachining together with fusing splicing techniques,
microholes or microchannels are created, which can form
MZIs and be used for high temperature sensing[20,21,76]. The
MZI high temperature sensor can also be fabricated in
microfibers[77].
In Ref. [78], a fiber in-line MI similar to that displayed in

Fig. 4(c) is constructed, with the help of femtosecond laser
micromachining. The device can be used for high temperature
sensing up to 1000°C, with the temperature sensitivity of
14.72 pm/°C. In Ref. [28], an inclined narrow slit inside the
SMF crossing the fiber core is created by using femtosecond laser
micromachining, and the narrow slit plays the role of an in-fiber
beam splitter. The optical fiber in-line MI fabricated is found to
have good high temperature sustainability up to 1000°C. In
Ref. [79], a fiber in-line MI high temperature sensor is con-
structed by using a femtosecond laser to cut a 45° fiber end.

4. Femtosecond Laser Fabricated FBGs in Sapphire
Fibers for High Temperature Sensing

Since the glass transition temperature of the silica is around
1050°C, the long-term stability of the SMF and microstructure
fiber is typically below 1200°C. For the high temperature optical
fiber sensing of greater than 1200°C, the sapphire fiber has to be
utilized[37,39,41,44,45,80–82], and thematerial has amelting temper-
ature of around 2050°C[37]. By femtosecond laser pulse irradia-
tion, FBGs can be effectively inscribed in sapphire fibers and
used for high temperature monitoring up to 1900°C[82]. As
the sapphire fiber is highly stable, it can operate in air and in
inert gases at an extremely high temperature environment.
However, the problems of FBGs in sapphire fibers are broad
bandwidth and poor spectral quality because of the associated
multimode nature. The efforts made to overcome such difficul-
ties are the use of the line-by-line scanning technique[44] and
inscribing the FBG on a micro-single-crystal sapphire fiber[80].
A proposal is to inscribe FBGs along the waveguide written in
the sapphire fiber, and the reflection peak of the Bragg grating

obtained is expected to have reduced bandwidth and hence
improved measurement resolution, as achieved in NCFs[71].

5. Conclusion

Various types of optical fiber sensors based on FBGs, LPFGs,
and fiber in-line interferometers have been fabricated in
SMFs, MMFs, and microstructured fibers by use of a femtosec-
ond laser for the high temperature sensing up to 1200°C and, for
a long time, limited by the glass transition temperature of silica.
For the higher temperature sensing up to 2000°C, the femtosec-
ond laser is even an indispensible tool for writing FBGs in sap-
phire fibers.
Compared with other techniques for optical fiber high tem-

perature sensor construction, femtosecond laser irradiation is
featured with widematerial processing suitability, rapid process-
ing speed, high processing precision, and small heat affected
zone, which ensures good processing quality and flexible fabri-
cation capability. It is expected that the femtosecond laser will
play a more and more important role in fabricating optical fiber
high temperature sensors suitable for extreme environment
monitoring.
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